{"title":"Application of Finite Pointset Method to Study Two-Way Coupled Transient Bio-Thermoelastic Effects in Skin Tissue","authors":"Jyoti Pal, Panchatcharam Mariappan, S. Sundar","doi":"10.1002/appl.70000","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In this research, we introduce the finite pointset method as an innovative approach for approximating transient linear thermoelasticity in biological tissue, addressing the complex interplay between thermal and elastic effects under three distinct shock conditions. Numerical simulations are performed to solve the coupled thermoelasticity equations, demonstrating the temperature distribution, displacement, and stress profiles within the tissue. The results highlight the influence of shock conditions on the thermal and mechanical responses of the tissue, emphasizing the impact of coupling parameter and perfusion rate. Numerical simulations are applied to several benchmark thermoelasticity problems, providing numerical results that validate the approach. Notably, our findings reveal the cooling effects induced by perfusion under both coupled and uncoupled scenarios and highlight the variability of temperature, displacement and stresses based on the coupling parameter. This work contributes to the field of biomedical engineering by providing insights into tissue behavior under thermal stress and offering potential applications in medical technology and therapeutic interventions. The use of FPM not only enhances the accuracy of modeling thermal and mechanical effects in biological tissues but also paves the way for advancements in medical technology. These findings have the potential to inform the development of new therapeutic strategies, particularly in areas related to laser treatments, thermal therapies, and other medical interventions requiring precise control of temperature and stress within tissues.</p></div>","PeriodicalId":100109,"journal":{"name":"Applied Research","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/appl.70000","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/appl.70000","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this research, we introduce the finite pointset method as an innovative approach for approximating transient linear thermoelasticity in biological tissue, addressing the complex interplay between thermal and elastic effects under three distinct shock conditions. Numerical simulations are performed to solve the coupled thermoelasticity equations, demonstrating the temperature distribution, displacement, and stress profiles within the tissue. The results highlight the influence of shock conditions on the thermal and mechanical responses of the tissue, emphasizing the impact of coupling parameter and perfusion rate. Numerical simulations are applied to several benchmark thermoelasticity problems, providing numerical results that validate the approach. Notably, our findings reveal the cooling effects induced by perfusion under both coupled and uncoupled scenarios and highlight the variability of temperature, displacement and stresses based on the coupling parameter. This work contributes to the field of biomedical engineering by providing insights into tissue behavior under thermal stress and offering potential applications in medical technology and therapeutic interventions. The use of FPM not only enhances the accuracy of modeling thermal and mechanical effects in biological tissues but also paves the way for advancements in medical technology. These findings have the potential to inform the development of new therapeutic strategies, particularly in areas related to laser treatments, thermal therapies, and other medical interventions requiring precise control of temperature and stress within tissues.