Tobias Komsthöft, Niccolò Bartalucci, Mark W. Tibbitt, Samuele Tosatti, Stefan Zürcher
{"title":"Non-Fouling Multi-Azide Polyoxazoline Brush-co-Polymers for Sensing Applications","authors":"Tobias Komsthöft, Niccolò Bartalucci, Mark W. Tibbitt, Samuele Tosatti, Stefan Zürcher","doi":"10.1002/admi.202400322","DOIUrl":null,"url":null,"abstract":"<p>\nOne of the key parameters of an artificial biosensor is a high signal-to-noise ratio. This is achieved by limiting non-specific interactions while simultaneously maximizing the targeted specific interaction. Here, it is combined non-fouling characteristics of poly(2-methyl-2-oxazoline) (PMOXA) coatings with an abundance of azide groups to create a multi-azide containing poly(2-methyl-2-oxazoline-co-2-(3-azidopropyl)-2-oxazoline) (PMCA) that can participate in bioorthogonal strain-promoted azide-alkyne cycloaddition (SPAAC) for functionalization. This functional polymer is made surface-active using the PAcrAm™ technology to obtain well-defined spontaneously adsorbed monolayers on gold surfaces. The resistance to non-specific interactions is tested against full human serum (HS), analyzed via variable angle spectroscopic ellipsometry (VASE), and compared to equivalent coatings based on PMOXA and azido-poly(ethylene glycol) (PEG-N<sub>3</sub>). The specific interactions are investigated via VASE and quartz crystal microbalance with dissipation (QCM-D) by immobilization of dibenzocyclooctyne-PEG4-biotin conjugate (DBCO-biotin) and streptavidin. The new PMCA-based coating shows superior resistance to non-specific protein adhesion than equivalent coatings based on commercially available PEG-N<sub>3</sub> and significantly increases capacity for SPAAC. A proof of principle assay (biotin-streptavidin/biotin-BSA/anti-BSA) shows improved binding for the new PMCA polymer compared with single azide PEG.</p>","PeriodicalId":115,"journal":{"name":"Advanced Materials Interfaces","volume":"11 35","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202400322","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Interfaces","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/admi.202400322","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
One of the key parameters of an artificial biosensor is a high signal-to-noise ratio. This is achieved by limiting non-specific interactions while simultaneously maximizing the targeted specific interaction. Here, it is combined non-fouling characteristics of poly(2-methyl-2-oxazoline) (PMOXA) coatings with an abundance of azide groups to create a multi-azide containing poly(2-methyl-2-oxazoline-co-2-(3-azidopropyl)-2-oxazoline) (PMCA) that can participate in bioorthogonal strain-promoted azide-alkyne cycloaddition (SPAAC) for functionalization. This functional polymer is made surface-active using the PAcrAm™ technology to obtain well-defined spontaneously adsorbed monolayers on gold surfaces. The resistance to non-specific interactions is tested against full human serum (HS), analyzed via variable angle spectroscopic ellipsometry (VASE), and compared to equivalent coatings based on PMOXA and azido-poly(ethylene glycol) (PEG-N3). The specific interactions are investigated via VASE and quartz crystal microbalance with dissipation (QCM-D) by immobilization of dibenzocyclooctyne-PEG4-biotin conjugate (DBCO-biotin) and streptavidin. The new PMCA-based coating shows superior resistance to non-specific protein adhesion than equivalent coatings based on commercially available PEG-N3 and significantly increases capacity for SPAAC. A proof of principle assay (biotin-streptavidin/biotin-BSA/anti-BSA) shows improved binding for the new PMCA polymer compared with single azide PEG.
期刊介绍:
Advanced Materials Interfaces publishes top-level research on interface technologies and effects. Considering any interface formed between solids, liquids, and gases, the journal ensures an interdisciplinary blend of physics, chemistry, materials science, and life sciences. Advanced Materials Interfaces was launched in 2014 and received an Impact Factor of 4.834 in 2018.
The scope of Advanced Materials Interfaces is dedicated to interfaces and surfaces that play an essential role in virtually all materials and devices. Physics, chemistry, materials science and life sciences blend to encourage new, cross-pollinating ideas, which will drive forward our understanding of the processes at the interface.
Advanced Materials Interfaces covers all topics in interface-related research:
Oil / water separation,
Applications of nanostructured materials,
2D materials and heterostructures,
Surfaces and interfaces in organic electronic devices,
Catalysis and membranes,
Self-assembly and nanopatterned surfaces,
Composite and coating materials,
Biointerfaces for technical and medical applications.
Advanced Materials Interfaces provides a forum for topics on surface and interface science with a wide choice of formats: Reviews, Full Papers, and Communications, as well as Progress Reports and Research News.