External Drivers and Mesoscale Self-Organization of Shallow Cold Pools in the Trade-Wind Regime

IF 4.4 2区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES
Pouriya Alinaghi, A. Pier Siebesma, Fredrik Jansson, Martin Janssens, Franziska Glassmeier
{"title":"External Drivers and Mesoscale Self-Organization of Shallow Cold Pools in the Trade-Wind Regime","authors":"Pouriya Alinaghi,&nbsp;A. Pier Siebesma,&nbsp;Fredrik Jansson,&nbsp;Martin Janssens,&nbsp;Franziska Glassmeier","doi":"10.1029/2024MS004540","DOIUrl":null,"url":null,"abstract":"<p>Recent observations of the trade-wind regions highlight the covariability between cold-pool properties and mesoscale cloud organization. Given the covariability of organization with cloud cover and albedo, this suggests a potential impact of cold pools on the cloud radiative effect (CRE). To explore this, we use an ensemble of 103 large-domain, high-resolution, large-eddy simulations and investigate how the variability in cold pools is determined by large-scale external cloud-controlling factors and shaped by processes within the mesoscale. It is demonstrated that the size and frequency of occurrence of cold pools are strongly influenced by the near-surface horizontal wind speed and large-scale subsidence. The temporal evolution of cold pools is strongly correlated with the diurnality in radiation. Even without external variability, we find a strong intermittent behavior in the evolution of cold pools, governed by a complex interplay between cold pools and clouds which expresses itself in the form of shallow squall lines. These squall lines result from precipitating downdrafts, cold pool outflows and the resulting gust fronts, reinforcing parent clouds. Cold pools influence the CRE of trade cumuli, but only when they exist during the day. This emphasizes the importance of the synchronization between cold-pool events and the diurnal cycle of insolation for the dependence of the CRE on cold pools.</p>","PeriodicalId":14881,"journal":{"name":"Journal of Advances in Modeling Earth Systems","volume":"17 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024MS004540","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advances in Modeling Earth Systems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024MS004540","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Recent observations of the trade-wind regions highlight the covariability between cold-pool properties and mesoscale cloud organization. Given the covariability of organization with cloud cover and albedo, this suggests a potential impact of cold pools on the cloud radiative effect (CRE). To explore this, we use an ensemble of 103 large-domain, high-resolution, large-eddy simulations and investigate how the variability in cold pools is determined by large-scale external cloud-controlling factors and shaped by processes within the mesoscale. It is demonstrated that the size and frequency of occurrence of cold pools are strongly influenced by the near-surface horizontal wind speed and large-scale subsidence. The temporal evolution of cold pools is strongly correlated with the diurnality in radiation. Even without external variability, we find a strong intermittent behavior in the evolution of cold pools, governed by a complex interplay between cold pools and clouds which expresses itself in the form of shallow squall lines. These squall lines result from precipitating downdrafts, cold pool outflows and the resulting gust fronts, reinforcing parent clouds. Cold pools influence the CRE of trade cumuli, but only when they exist during the day. This emphasizes the importance of the synchronization between cold-pool events and the diurnal cycle of insolation for the dependence of the CRE on cold pools.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Advances in Modeling Earth Systems
Journal of Advances in Modeling Earth Systems METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
11.40
自引率
11.80%
发文量
241
审稿时长
>12 weeks
期刊介绍: The Journal of Advances in Modeling Earth Systems (JAMES) is committed to advancing the science of Earth systems modeling by offering high-quality scientific research through online availability and open access licensing. JAMES invites authors and readers from the international Earth systems modeling community. Open access. Articles are available free of charge for everyone with Internet access to view and download. Formal peer review. Supplemental material, such as code samples, images, and visualizations, is published at no additional charge. No additional charge for color figures. Modest page charges to cover production costs. Articles published in high-quality full text PDF, HTML, and XML. Internal and external reference linking, DOI registration, and forward linking via CrossRef.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信