Bioassay‐Guided Extraction and Isolation of Natural Herbicides from Dried Zanthoxylum limonella Alston Fruits

IF 2.8 4区 化学 Q1 CHEMISTRY, ORGANIC
Warot Chotpatiwetchkul , Patchanee Charoenying , Montinee Teerarak , Jatuporn Meesin , Nathjanan Jongkon , Nawasit Chotsaeng , Chamroon Laosinwattana
{"title":"Bioassay‐Guided Extraction and Isolation of Natural Herbicides from Dried Zanthoxylum limonella Alston Fruits","authors":"Warot Chotpatiwetchkul ,&nbsp;Patchanee Charoenying ,&nbsp;Montinee Teerarak ,&nbsp;Jatuporn Meesin ,&nbsp;Nathjanan Jongkon ,&nbsp;Nawasit Chotsaeng ,&nbsp;Chamroon Laosinwattana","doi":"10.1002/ajoc.202400317","DOIUrl":null,"url":null,"abstract":"<div><div>Weeds are problematic plant species around the world. Various strategies exist for controlling weeds, but chemical treatment remains the preferred method, particularly when using natural substances. In this research, a crude aqueous‐methanol extract from dried <em>Zanthoxylum limonella</em> fruits was acid‐base partitioned into four fractions: neutral extract (NE), acid extract (AE), basic extract (BE), and aqueous extract (AQ). These fractions were further separated into seventeen subfractions: NEF1 to NEF7, AEF1 to AEF5, and BEF1 to BEF5, which were then tested for herbicidal activity against the growth of Chinese amaranth (<em>Amaranthus tricolor</em>) and barnyard grass (<em>Echinochloa crus‐galli</em>). Active subfractions were isolated via column chromatography and identified using spectroscopic methods, yielding seven active compounds: xanthoxyline (<strong>1</strong>), tambulin (<strong>2</strong>), atanine (<strong>3</strong>), prudomestin (<strong>4</strong>), skimmianine (<strong>5</strong>), <em>p</em>‐methoxybenzoic acid (<strong>6</strong>), and methyl caffeate (<strong>7</strong>). Compounds <strong>2–7</strong> had not been previously reported in <em>Z. limonella</em>. Xanthoxyline (<strong>1</strong>) was identified as the most potent botanical herbicide, fully inhibiting seed germination of Chinese amaranth and barnyard grass. This compound also decreased seed imbibition and α‐amylase activity in both species. Molecular docking studies on the α‐amylase enzyme (PDB ID: 1BG9) revealed that the aromatic, hydroxy, and carbonyl groups of xanthoxyline (<strong>1</strong>) interact with the enzyme's active sites.</div></div>","PeriodicalId":130,"journal":{"name":"Asian Journal of Organic Chemistry","volume":"14 1","pages":"Article e202400317"},"PeriodicalIF":2.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Organic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S219358072400391X","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0

Abstract

Weeds are problematic plant species around the world. Various strategies exist for controlling weeds, but chemical treatment remains the preferred method, particularly when using natural substances. In this research, a crude aqueous‐methanol extract from dried Zanthoxylum limonella fruits was acid‐base partitioned into four fractions: neutral extract (NE), acid extract (AE), basic extract (BE), and aqueous extract (AQ). These fractions were further separated into seventeen subfractions: NEF1 to NEF7, AEF1 to AEF5, and BEF1 to BEF5, which were then tested for herbicidal activity against the growth of Chinese amaranth (Amaranthus tricolor) and barnyard grass (Echinochloa crus‐galli). Active subfractions were isolated via column chromatography and identified using spectroscopic methods, yielding seven active compounds: xanthoxyline (1), tambulin (2), atanine (3), prudomestin (4), skimmianine (5), p‐methoxybenzoic acid (6), and methyl caffeate (7). Compounds 2–7 had not been previously reported in Z. limonella. Xanthoxyline (1) was identified as the most potent botanical herbicide, fully inhibiting seed germination of Chinese amaranth and barnyard grass. This compound also decreased seed imbibition and α‐amylase activity in both species. Molecular docking studies on the α‐amylase enzyme (PDB ID: 1BG9) revealed that the aromatic, hydroxy, and carbonyl groups of xanthoxyline (1) interact with the enzyme's active sites.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.70
自引率
3.70%
发文量
372
期刊介绍: Organic chemistry is the fundamental science that stands at the heart of chemistry, biology, and materials science. Research in these areas is vigorous and truly international, with three major regions making almost equal contributions: America, Europe and Asia. Asia now has its own top international organic chemistry journal—the Asian Journal of Organic Chemistry (AsianJOC) The AsianJOC is designed to be a top-ranked international research journal and publishes primary research as well as critical secondary information from authors across the world. The journal covers organic chemistry in its entirety. Authors and readers come from academia, the chemical industry, and government laboratories.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信