Finite subgroups of the profinite completion of good groups

IF 0.8 3区 数学 Q2 MATHEMATICS
Marco Boggi, Pavel Zalesskii
{"title":"Finite subgroups of the profinite completion of good groups","authors":"Marco Boggi,&nbsp;Pavel Zalesskii","doi":"10.1112/blms.13193","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math> be a residually finite, good group of finite virtual cohomological dimension. We prove that the natural monomorphism <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n <mo>↪</mo>\n <mover>\n <mi>G</mi>\n <mo>̂</mo>\n </mover>\n </mrow>\n <annotation>$G\\hookrightarrow {\\widehat{G}}$</annotation>\n </semantics></math> induces a bijective correspondence between conjugacy classes of finite <span></span><math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math>-subgroups of <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math> and those of its profinite completion <span></span><math>\n <semantics>\n <mover>\n <mi>G</mi>\n <mo>̂</mo>\n </mover>\n <annotation>${\\widehat{G}}$</annotation>\n </semantics></math>. Moreover, we prove that the centralizers and normalizers in <span></span><math>\n <semantics>\n <mover>\n <mi>G</mi>\n <mo>̂</mo>\n </mover>\n <annotation>${\\widehat{G}}$</annotation>\n </semantics></math> of finite <span></span><math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math>-subgroups of <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math> are the closures of the respective centralizers and normalizers in <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math>. With somewhat more restrictive hypotheses, we prove the same results for finite solvable subgroups of <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math>. In the last section, we give a few applications of this theorem to hyperelliptic mapping class groups and virtually compact special toral relatively hyperbolic groups (these include fundamental groups of 3-orbifolds and of uniform standard arithmetic hyperbolic orbifolds).</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 1","pages":"236-255"},"PeriodicalIF":0.8000,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13193","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let G $G$ be a residually finite, good group of finite virtual cohomological dimension. We prove that the natural monomorphism G G ̂ $G\hookrightarrow {\widehat{G}}$ induces a bijective correspondence between conjugacy classes of finite p $p$ -subgroups of G $G$ and those of its profinite completion G ̂ ${\widehat{G}}$ . Moreover, we prove that the centralizers and normalizers in G ̂ ${\widehat{G}}$ of finite p $p$ -subgroups of G $G$ are the closures of the respective centralizers and normalizers in G $G$ . With somewhat more restrictive hypotheses, we prove the same results for finite solvable subgroups of G $G$ . In the last section, we give a few applications of this theorem to hyperelliptic mapping class groups and virtually compact special toral relatively hyperbolic groups (these include fundamental groups of 3-orbifolds and of uniform standard arithmetic hyperbolic orbifolds).

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信