Effects of Hot Versus Dry Vapor Pressure Deficit on Ecosystem Carbon and Water Fluxes

IF 3.7 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
Miriam R. Johnston, Mallory L. Barnes, Yakir Preisler, William K. Smith, Joel A. Biederman, Russell L. Scott, A. Park Williams, Matthew P. Dannenberg
{"title":"Effects of Hot Versus Dry Vapor Pressure Deficit on Ecosystem Carbon and Water Fluxes","authors":"Miriam R. Johnston,&nbsp;Mallory L. Barnes,&nbsp;Yakir Preisler,&nbsp;William K. Smith,&nbsp;Joel A. Biederman,&nbsp;Russell L. Scott,&nbsp;A. Park Williams,&nbsp;Matthew P. Dannenberg","doi":"10.1029/2024JG008146","DOIUrl":null,"url":null,"abstract":"<p>Vapor pressure deficit (VPD) has increased and will likely continue increasing, with wide-ranging effects on ecosystems. Future VPD increases will largely be driven by warming, yet most experiments examining VPD effects on plants have done so by changing humidity. Here, we used meteorological data and carbon and water fluxes measured at 26 climatically-diverse eddy covariance sites to quantify the extent to which VPD has been driven by variation in air temperature versus humidity. We fit generalized additive models (GAMs) at each site to quantify effects of hotter (and wetter) and cooler (and drier) versus typical VPD on ecosystem-scale fluxes of carbon and water. We found that VPD has occurred under diverse combinations of temperature and humidity: &gt;50% of a site's daytime growing season temperature range and &gt;35% of its relative humidity range have often combined to define a particular VPD. We found moderate evidence that hotter versus drier VPD of the same magnitude differentially affect gross primary productivity (GPP), net ecosystem productivity (NEP), and latent heat flux (LE): Selected GPP and NEP GAMs at about half of sites and LE GAMs at about a third of sites included a VPD-temperature interaction. The magnitude of the interaction varied, but was generally 29%–57% of the effect attributable solely to VPD. The direction of the interaction also varied, but hot VPD was commonly associated with higher carbon fluxes. These effects were not strongly modified by soil moisture. Overall, results emphasize the relevance of VPD-temperature interactions at a critical time of rapid VPD increase.</p>","PeriodicalId":16003,"journal":{"name":"Journal of Geophysical Research: Biogeosciences","volume":"130 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JG008146","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Biogeosciences","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JG008146","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Vapor pressure deficit (VPD) has increased and will likely continue increasing, with wide-ranging effects on ecosystems. Future VPD increases will largely be driven by warming, yet most experiments examining VPD effects on plants have done so by changing humidity. Here, we used meteorological data and carbon and water fluxes measured at 26 climatically-diverse eddy covariance sites to quantify the extent to which VPD has been driven by variation in air temperature versus humidity. We fit generalized additive models (GAMs) at each site to quantify effects of hotter (and wetter) and cooler (and drier) versus typical VPD on ecosystem-scale fluxes of carbon and water. We found that VPD has occurred under diverse combinations of temperature and humidity: >50% of a site's daytime growing season temperature range and >35% of its relative humidity range have often combined to define a particular VPD. We found moderate evidence that hotter versus drier VPD of the same magnitude differentially affect gross primary productivity (GPP), net ecosystem productivity (NEP), and latent heat flux (LE): Selected GPP and NEP GAMs at about half of sites and LE GAMs at about a third of sites included a VPD-temperature interaction. The magnitude of the interaction varied, but was generally 29%–57% of the effect attributable solely to VPD. The direction of the interaction also varied, but hot VPD was commonly associated with higher carbon fluxes. These effects were not strongly modified by soil moisture. Overall, results emphasize the relevance of VPD-temperature interactions at a critical time of rapid VPD increase.

Abstract Image

干热蒸汽压差对生态系统碳和水通量的影响
蒸汽压差(VPD)已经增加,并可能继续增加,对生态系统产生广泛的影响。未来VPD的增加将主要由变暖驱动,但大多数研究VPD对植物影响的实验都是通过改变湿度来实现的。在这里,我们使用了气象数据以及在26个气候不同的涡动相关点测量的碳和水通量来量化VPD受空气温度与湿度变化驱动的程度。我们在每个站点拟合了广义加性模型(GAMs),以量化较热(和较湿)和较冷(和较干)与典型VPD对生态系统尺度碳和水通量的影响。我们发现VPD发生在不同的温度和湿度组合下:一个地点50%的白天生长季节温度范围和35%的相对湿度范围经常结合在一起定义一个特定的VPD。我们发现了中等程度的证据,表明相同量级的更热的VPD与更干燥的VPD对总初级生产力(GPP)、净生态系统生产力(NEP)和潜热通量(LE)有不同的影响:约一半的站点的选定GPP和NEP GAMs以及约三分之一的站点的LE GAMs包括VPD-温度相互作用。相互作用的程度各不相同,但通常29%-57%的影响仅归因于VPD。相互作用的方向也不同,但热VPD通常与较高的碳通量有关。这些效应不受土壤湿度的强烈影响。总的来说,结果强调了VPD快速增加的关键时刻VPD-温度相互作用的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geophysical Research: Biogeosciences
Journal of Geophysical Research: Biogeosciences Earth and Planetary Sciences-Paleontology
CiteScore
6.60
自引率
5.40%
发文量
242
期刊介绍: JGR-Biogeosciences focuses on biogeosciences of the Earth system in the past, present, and future and the extension of this research to planetary studies. The emerging field of biogeosciences spans the intellectual interface between biology and the geosciences and attempts to understand the functions of the Earth system across multiple spatial and temporal scales. Studies in biogeosciences may use multiple lines of evidence drawn from diverse fields to gain a holistic understanding of terrestrial, freshwater, and marine ecosystems and extreme environments. Specific topics within the scope of the section include process-based theoretical, experimental, and field studies of biogeochemistry, biogeophysics, atmosphere-, land-, and ocean-ecosystem interactions, biomineralization, life in extreme environments, astrobiology, microbial processes, geomicrobiology, and evolutionary geobiology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信