{"title":"Chebotarov Continua, Jenkins–Strebel Differentials and Related Problems: A Numerical Approach","authors":"M. Bertola","doi":"10.1111/sapm.70016","DOIUrl":null,"url":null,"abstract":"<p>We detail a numerical algorithm and related code to construct rational quadratic differentials on the Riemann sphere that satisfy the Boutroux condition. These differentials, in special cases, provide solutions of (generalized) Chebotarov problem as well as being instances of Jenkins–Strebel differentials. The algorithm allows to construct Boutroux differentials with prescribed polar part, thus being useful in the theory of weighted capacity and random matrices.</p>","PeriodicalId":51174,"journal":{"name":"Studies in Applied Mathematics","volume":"154 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/sapm.70016","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/sapm.70016","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We detail a numerical algorithm and related code to construct rational quadratic differentials on the Riemann sphere that satisfy the Boutroux condition. These differentials, in special cases, provide solutions of (generalized) Chebotarov problem as well as being instances of Jenkins–Strebel differentials. The algorithm allows to construct Boutroux differentials with prescribed polar part, thus being useful in the theory of weighted capacity and random matrices.
期刊介绍:
Studies in Applied Mathematics explores the interplay between mathematics and the applied disciplines. It publishes papers that advance the understanding of physical processes, or develop new mathematical techniques applicable to physical and real-world problems. Its main themes include (but are not limited to) nonlinear phenomena, mathematical modeling, integrable systems, asymptotic analysis, inverse problems, numerical analysis, dynamical systems, scientific computing and applications to areas such as fluid mechanics, mathematical biology, and optics.