Light Absorbing Particles Deposited to Snow Cover Across the Upper Colorado River Basin, Colorado, 2013–2016: Interannual Variations From Multiple Natural and Anthropogenic Sources

IF 3.8 2区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES
Richard L. Reynolds, Harland L. Goldstein, Raymond Kokaly, Heather Lowers, George N. Breit, Bruce M. Moskowitz, Peat Solheid, Jeff Derry, Corey R. Lawrence
{"title":"Light Absorbing Particles Deposited to Snow Cover Across the Upper Colorado River Basin, Colorado, 2013–2016: Interannual Variations From Multiple Natural and Anthropogenic Sources","authors":"Richard L. Reynolds,&nbsp;Harland L. Goldstein,&nbsp;Raymond Kokaly,&nbsp;Heather Lowers,&nbsp;George N. Breit,&nbsp;Bruce M. Moskowitz,&nbsp;Peat Solheid,&nbsp;Jeff Derry,&nbsp;Corey R. Lawrence","doi":"10.1029/2024JD041676","DOIUrl":null,"url":null,"abstract":"<p>Atmospheric particulate matter (PM) as light-absorbing particles (LAPs) deposited to snow cover can result in early onset and rapid snow melting, challenging management of downstream water resources. We identified LAPs in 38 snow samples (water years 2013–2016) from the mountainous Upper Colorado River basin by comparing among laboratory-measured spectral reflectance, chemical, physical, and magnetic properties. Dust sample reflectance, averaged over the wavelength range of 0.35–2.50 μm, varied by a factor of 1.9 (range, 0.2300–0.4444) and was suppressed mainly by three components: (a) carbonaceous matter measured as total organic carbon (1.6–22.5 wt. %) including inferred black carbon, natural organic matter, and carbon-based synthetic, black road-tire-wear particles, (b) dark rock and mineral particles, indicated by amounts of magnetite (0.11–0.37 wt. %) as their proxy, and (c) ferric oxide minerals identified by reflectance spectroscopy and magnetic properties. Fundamental compositional differences were associated with different iron oxide groups defined by dominant hematite, goethite, or magnetite. These differences in iron oxide mineralogy are attributed to temporally varying source-area contributions implying strong interannual changes in regional source behavior, dust-storm frequency, and (or) transport tracks. Observations of dust-storm activity in the western U.S. and particle-size averages for all samples (median, 25 μm) indicated that regional dust from deserts dominated mineral-dust masses. Fugitive contaminants, nevertheless, contributed important amounts of LAPs from many types of anthropogenic sources.</p>","PeriodicalId":15986,"journal":{"name":"Journal of Geophysical Research: Atmospheres","volume":"130 2","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JD041676","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Atmospheres","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JD041676","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Atmospheric particulate matter (PM) as light-absorbing particles (LAPs) deposited to snow cover can result in early onset and rapid snow melting, challenging management of downstream water resources. We identified LAPs in 38 snow samples (water years 2013–2016) from the mountainous Upper Colorado River basin by comparing among laboratory-measured spectral reflectance, chemical, physical, and magnetic properties. Dust sample reflectance, averaged over the wavelength range of 0.35–2.50 μm, varied by a factor of 1.9 (range, 0.2300–0.4444) and was suppressed mainly by three components: (a) carbonaceous matter measured as total organic carbon (1.6–22.5 wt. %) including inferred black carbon, natural organic matter, and carbon-based synthetic, black road-tire-wear particles, (b) dark rock and mineral particles, indicated by amounts of magnetite (0.11–0.37 wt. %) as their proxy, and (c) ferric oxide minerals identified by reflectance spectroscopy and magnetic properties. Fundamental compositional differences were associated with different iron oxide groups defined by dominant hematite, goethite, or magnetite. These differences in iron oxide mineralogy are attributed to temporally varying source-area contributions implying strong interannual changes in regional source behavior, dust-storm frequency, and (or) transport tracks. Observations of dust-storm activity in the western U.S. and particle-size averages for all samples (median, 25 μm) indicated that regional dust from deserts dominated mineral-dust masses. Fugitive contaminants, nevertheless, contributed important amounts of LAPs from many types of anthropogenic sources.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geophysical Research: Atmospheres
Journal of Geophysical Research: Atmospheres Earth and Planetary Sciences-Geophysics
CiteScore
7.30
自引率
11.40%
发文量
684
期刊介绍: JGR: Atmospheres publishes articles that advance and improve understanding of atmospheric properties and processes, including the interaction of the atmosphere with other components of the Earth system.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信