Fast and low-cost determination of prostate-specific antigen using paper-based immunodevice modified with Cu@CuS@Au NPs nanocages

IF 1.6 Q4 ENGINEERING, BIOMEDICAL
Yi Duan, Qi Wu, Jiangtao Lin, Yourong Duan, Qi Wang, Yuanyuan Li
{"title":"Fast and low-cost determination of prostate-specific antigen using paper-based immunodevice modified with Cu@CuS@Au NPs nanocages","authors":"Yi Duan,&nbsp;Qi Wu,&nbsp;Jiangtao Lin,&nbsp;Yourong Duan,&nbsp;Qi Wang,&nbsp;Yuanyuan Li","doi":"10.1049/bsb2.12090","DOIUrl":null,"url":null,"abstract":"<p>In this study, the authors designed a paper-based electrochemical immunodevice modified with copper embedded in copper sulphide hollow nanocages wrapped with Au nanoparticles (Cu@CuS@Au NPs) for the specific detection of prostate-specific antigen (PSA), aiming to advance point-of-care testing. The large specific surface area of Cu@CuS nanocages enables efficient capture of biotin antibodies, leading to the direct amplification of the signal through the inhibition of electron transport in the redox process of Cu, eliminating the need for universal redox electron mediators. Additionally, Au NPs on the surface of Cu@CuS can accelerate charge transfer and conjugate with anti-PSA. The hierarchical morphology and structure of Cu@CuS nanocages were characterised using scanning electron microscopy and transmission electron microscopy. The fabrication process of the immunodevice was monitored using cyclic voltammetry and electrochemical impedance spectroscopy analyses. PSA was sensitively detected using differential pulse voltammetry on this proposed immunodevice within a linear range from 0 to 100 ng/ml (<i>R</i><sup>2</sup> = 0.996), achieving a low detection limit of 0.077 ng/ml. In addition, the practicality of the developed immunosensor has been proven by successfully detecting PSA in human serum samples obtained from clinical settings. The integration of electrochemical sensors and microfluidic devices holds promise for developing cost-effective approaches in clinical immunoassays.</p>","PeriodicalId":52235,"journal":{"name":"Biosurface and Biotribology","volume":"11 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/bsb2.12090","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosurface and Biotribology","FirstCategoryId":"1087","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/bsb2.12090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, the authors designed a paper-based electrochemical immunodevice modified with copper embedded in copper sulphide hollow nanocages wrapped with Au nanoparticles (Cu@CuS@Au NPs) for the specific detection of prostate-specific antigen (PSA), aiming to advance point-of-care testing. The large specific surface area of Cu@CuS nanocages enables efficient capture of biotin antibodies, leading to the direct amplification of the signal through the inhibition of electron transport in the redox process of Cu, eliminating the need for universal redox electron mediators. Additionally, Au NPs on the surface of Cu@CuS can accelerate charge transfer and conjugate with anti-PSA. The hierarchical morphology and structure of Cu@CuS nanocages were characterised using scanning electron microscopy and transmission electron microscopy. The fabrication process of the immunodevice was monitored using cyclic voltammetry and electrochemical impedance spectroscopy analyses. PSA was sensitively detected using differential pulse voltammetry on this proposed immunodevice within a linear range from 0 to 100 ng/ml (R2 = 0.996), achieving a low detection limit of 0.077 ng/ml. In addition, the practicality of the developed immunosensor has been proven by successfully detecting PSA in human serum samples obtained from clinical settings. The integration of electrochemical sensors and microfluidic devices holds promise for developing cost-effective approaches in clinical immunoassays.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biosurface and Biotribology
Biosurface and Biotribology Engineering-Mechanical Engineering
CiteScore
1.70
自引率
0.00%
发文量
27
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信