Richard Schönlein, Xabier Larrañaga, Asier Panfilo, Yu Li, Aitor Larrañaga, Guoming Liu, Alejandro J. Müller, Robert Aguirresarobe, Jone M. Ugartemendia
{"title":"Enhanced Piezoelectric Properties of Poly(L-lactide) Nanocomposite Microfiber Scaffolds Due to Polydopamine-Coating of Barium Titanate Nanoparticles","authors":"Richard Schönlein, Xabier Larrañaga, Asier Panfilo, Yu Li, Aitor Larrañaga, Guoming Liu, Alejandro J. Müller, Robert Aguirresarobe, Jone M. Ugartemendia","doi":"10.1002/admi.202400546","DOIUrl":null,"url":null,"abstract":"<p>Recent biomedical applications demand piezoelectric polylactide (PLA)-based polymers, possessing biodegradable and biocompatible properties for tissue regeneration, implantable force sensors, and energy harvesting devices. However, piezoelectric poly(L-lactide) (PLLA) possesses weak piezoelectric properties in comparison to non-biodegradable poly(vinylidene fluoride) (PVDF), limiting its application. This contribution presents, for the first time, a nanocomposite strategy to enhance the piezoelectric properties of PLLA, while maintaining cytocompatibility. Biocompatible and piezoelectric barium titanate (BTO) nanoparticles (NPs) are coated by polydopamine (PDA) (cBTO NPs) to improve the quality of the matrix-filler interface and enhanced the force transmission toward the BTO NPs. Electrospun PLLA/cBTO nanocomposite microfiber scaffolds with 5 wt% of PDA-coated BTO NPs (cBTO) exhibited an increase in piezoelectric properties of 120% in comparison to pristine PLLA microfiber scaffolds, implying a voltage output increase from 1.4 ± 0.1 to 3.2 ± 0.2 V. Furthermore, the PDA-coating of BTO (cBTO) NPs itself has an intensifying impact on the piezoelectric properties of PLLA/cBTO nanocomposite compared to non-coated BTO NPs, increasing the voltage output by 41%. This demonstrates the great potential of PDA-coating of piezoelectric NPs to enhance the piezoelectric response of PLLA.</p>","PeriodicalId":115,"journal":{"name":"Advanced Materials Interfaces","volume":"12 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202400546","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Interfaces","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/admi.202400546","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Recent biomedical applications demand piezoelectric polylactide (PLA)-based polymers, possessing biodegradable and biocompatible properties for tissue regeneration, implantable force sensors, and energy harvesting devices. However, piezoelectric poly(L-lactide) (PLLA) possesses weak piezoelectric properties in comparison to non-biodegradable poly(vinylidene fluoride) (PVDF), limiting its application. This contribution presents, for the first time, a nanocomposite strategy to enhance the piezoelectric properties of PLLA, while maintaining cytocompatibility. Biocompatible and piezoelectric barium titanate (BTO) nanoparticles (NPs) are coated by polydopamine (PDA) (cBTO NPs) to improve the quality of the matrix-filler interface and enhanced the force transmission toward the BTO NPs. Electrospun PLLA/cBTO nanocomposite microfiber scaffolds with 5 wt% of PDA-coated BTO NPs (cBTO) exhibited an increase in piezoelectric properties of 120% in comparison to pristine PLLA microfiber scaffolds, implying a voltage output increase from 1.4 ± 0.1 to 3.2 ± 0.2 V. Furthermore, the PDA-coating of BTO (cBTO) NPs itself has an intensifying impact on the piezoelectric properties of PLLA/cBTO nanocomposite compared to non-coated BTO NPs, increasing the voltage output by 41%. This demonstrates the great potential of PDA-coating of piezoelectric NPs to enhance the piezoelectric response of PLLA.
期刊介绍:
Advanced Materials Interfaces publishes top-level research on interface technologies and effects. Considering any interface formed between solids, liquids, and gases, the journal ensures an interdisciplinary blend of physics, chemistry, materials science, and life sciences. Advanced Materials Interfaces was launched in 2014 and received an Impact Factor of 4.834 in 2018.
The scope of Advanced Materials Interfaces is dedicated to interfaces and surfaces that play an essential role in virtually all materials and devices. Physics, chemistry, materials science and life sciences blend to encourage new, cross-pollinating ideas, which will drive forward our understanding of the processes at the interface.
Advanced Materials Interfaces covers all topics in interface-related research:
Oil / water separation,
Applications of nanostructured materials,
2D materials and heterostructures,
Surfaces and interfaces in organic electronic devices,
Catalysis and membranes,
Self-assembly and nanopatterned surfaces,
Composite and coating materials,
Biointerfaces for technical and medical applications.
Advanced Materials Interfaces provides a forum for topics on surface and interface science with a wide choice of formats: Reviews, Full Papers, and Communications, as well as Progress Reports and Research News.