Kassandra M. Costa, Frantz Ossa Ossa, Ann Dunlea, Frank J. Pavia, Logan Tegler, Maureen Auro, Morten Andersen, Sune G. Nielsen
{"title":"Calculating Sedimentation Rates of Oxic Pelagic Clays Using Core Top Thorium Isotopes","authors":"Kassandra M. Costa, Frantz Ossa Ossa, Ann Dunlea, Frank J. Pavia, Logan Tegler, Maureen Auro, Morten Andersen, Sune G. Nielsen","doi":"10.1029/2024GC011717","DOIUrl":null,"url":null,"abstract":"<p>Oxic pelagic clays are an important component of seafloor sediment that may hold valuable information about past ocean chemistry due to their affinity for and accumulation of biogeochemically important metals. We present a new approach to calculating site-specific sedimentation rates (SRs) by comparing authigenic sediment thorium isotope compositions (<sup>230</sup>Th/<sup>232</sup>Th) to seawater dissolved <sup>230</sup>Th/<sup>232</sup>Th in a suite of deep (>3,000 m) pelagic core sites. We extracted the authigenic sediment fraction using an HHAc leach protocol, which major element chemistry (Al, Mn, Fe, Ti) suggested was less affected by lithogenic contamination than the HCl leach. Four different methods were tested for extracting the appropriate initial <sup>230</sup>Th/<sup>232</sup>Th from seawater: using either the nearest water column station (methods 1 and 2) or a regionally averaged profile (methods 3 and 4) and using either the bottommost profile measurement (methods 1 and 3) or linear regression of the profile and extrapolation to the seafloor (methods 2 and 4). Method 3 outperformed the other methods in reconstructing previously published SRs from pelagic clays in the North Pacific. The new thorium-based SRs were then combined with estimates from the total sediment thickness on ocean crust and non-lithogenic cobalt accumulation to determine the best estimates for SRs of oxic pelagic clays. The Pacific has the lowest SR (median 0.28 cm/kyr), while the Atlantic is higher (median 0.46 cm/kyr) and the Indian Ocean is highest (median 0.75 cm/kyr). These new estimates are consistent with the expected spatial patterns of sedimentation, but they revise the absolute SR values downward from available gridded SR maps.</p>","PeriodicalId":50422,"journal":{"name":"Geochemistry Geophysics Geosystems","volume":"26 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GC011717","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochemistry Geophysics Geosystems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024GC011717","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Oxic pelagic clays are an important component of seafloor sediment that may hold valuable information about past ocean chemistry due to their affinity for and accumulation of biogeochemically important metals. We present a new approach to calculating site-specific sedimentation rates (SRs) by comparing authigenic sediment thorium isotope compositions (230Th/232Th) to seawater dissolved 230Th/232Th in a suite of deep (>3,000 m) pelagic core sites. We extracted the authigenic sediment fraction using an HHAc leach protocol, which major element chemistry (Al, Mn, Fe, Ti) suggested was less affected by lithogenic contamination than the HCl leach. Four different methods were tested for extracting the appropriate initial 230Th/232Th from seawater: using either the nearest water column station (methods 1 and 2) or a regionally averaged profile (methods 3 and 4) and using either the bottommost profile measurement (methods 1 and 3) or linear regression of the profile and extrapolation to the seafloor (methods 2 and 4). Method 3 outperformed the other methods in reconstructing previously published SRs from pelagic clays in the North Pacific. The new thorium-based SRs were then combined with estimates from the total sediment thickness on ocean crust and non-lithogenic cobalt accumulation to determine the best estimates for SRs of oxic pelagic clays. The Pacific has the lowest SR (median 0.28 cm/kyr), while the Atlantic is higher (median 0.46 cm/kyr) and the Indian Ocean is highest (median 0.75 cm/kyr). These new estimates are consistent with the expected spatial patterns of sedimentation, but they revise the absolute SR values downward from available gridded SR maps.
期刊介绍:
Geochemistry, Geophysics, Geosystems (G3) publishes research papers on Earth and planetary processes with a focus on understanding the Earth as a system. Observational, experimental, and theoretical investigations of the solid Earth, hydrosphere, atmosphere, biosphere, and solar system at all spatial and temporal scales are welcome. Articles should be of broad interest, and interdisciplinary approaches are encouraged.
Areas of interest for this peer-reviewed journal include, but are not limited to:
The physics and chemistry of the Earth, including its structure, composition, physical properties, dynamics, and evolution
Principles and applications of geochemical proxies to studies of Earth history
The physical properties, composition, and temporal evolution of the Earth''s major reservoirs and the coupling between them
The dynamics of geochemical and biogeochemical cycles at all spatial and temporal scales
Physical and cosmochemical constraints on the composition, origin, and evolution of the Earth and other terrestrial planets
The chemistry and physics of solar system materials that are relevant to the formation, evolution, and current state of the Earth and the planets
Advances in modeling, observation, and experimentation that are of widespread interest in the geosciences.