Charging Ahead: The Evolution and Reliability of Nickel-Zinc Battery Solutions

IF 10.7 Q1 CHEMISTRY, PHYSICAL
EcoMat Pub Date : 2024-11-24 DOI:10.1002/eom2.12505
Idris Temitope Bello, Hassan Raza, Alabi Tobi Michael, Madithedu Muneeswara, Neha Tewari, Wang Bingsen, Yin Nee Cheung, Zungsun Choi, Steven T. Boles
{"title":"Charging Ahead: The Evolution and Reliability of Nickel-Zinc Battery Solutions","authors":"Idris Temitope Bello,&nbsp;Hassan Raza,&nbsp;Alabi Tobi Michael,&nbsp;Madithedu Muneeswara,&nbsp;Neha Tewari,&nbsp;Wang Bingsen,&nbsp;Yin Nee Cheung,&nbsp;Zungsun Choi,&nbsp;Steven T. Boles","doi":"10.1002/eom2.12505","DOIUrl":null,"url":null,"abstract":"<p>Nickel-Zinc (Ni-Zn) batteries offer an interesting alternative for the expanding electrochemical energy storage industry due to their high-power density, low cost, and environmental friendliness. However, significant reliability challenges such as capacity fading, self-discharge, thermal instability, and electrode degradation detract from their competitiveness in the market, hindering their widespread adoption. This study thoroughly examines the degradation mechanisms and approaches to improve the reliability of Ni-Zn batteries: Starting with their basic chemistry, operating principles, and degradation pathways, strategies for improvement are explored including material modification, electrolyte optimization, cell design approaches, and thermal management techniques. Advanced characterization methods for data collection and reliability assessment are discussed, including electrochemical, structural, spectroscopic, and in situ techniques which are noted for their ability to identify key areas of concern for this cell chemistry. We further consider emerging trends such as novel materials, hybridization with other energy technologies, and the challenges of large-scale implementation, emphasizing the need for standardized reliability testing protocols. Opportunities for the integration of advanced sensing, such as fiber Bragg grating (FBG) sensors for real-time monitoring and anomaly detection, along with machine learning (ML) and prognostics and health management of Ni-Zn batteries are highlighted, as these open the door to future research directions. This comprehensive review should serve as a resource for researchers, engineers, and industry experts aiming to advance and commercialize dependable, high-performing Ni-Zn battery technology for a sustainable energy future.</p><p>\n \n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure>\n </p>","PeriodicalId":93174,"journal":{"name":"EcoMat","volume":"7 1","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eom2.12505","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EcoMat","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eom2.12505","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Nickel-Zinc (Ni-Zn) batteries offer an interesting alternative for the expanding electrochemical energy storage industry due to their high-power density, low cost, and environmental friendliness. However, significant reliability challenges such as capacity fading, self-discharge, thermal instability, and electrode degradation detract from their competitiveness in the market, hindering their widespread adoption. This study thoroughly examines the degradation mechanisms and approaches to improve the reliability of Ni-Zn batteries: Starting with their basic chemistry, operating principles, and degradation pathways, strategies for improvement are explored including material modification, electrolyte optimization, cell design approaches, and thermal management techniques. Advanced characterization methods for data collection and reliability assessment are discussed, including electrochemical, structural, spectroscopic, and in situ techniques which are noted for their ability to identify key areas of concern for this cell chemistry. We further consider emerging trends such as novel materials, hybridization with other energy technologies, and the challenges of large-scale implementation, emphasizing the need for standardized reliability testing protocols. Opportunities for the integration of advanced sensing, such as fiber Bragg grating (FBG) sensors for real-time monitoring and anomaly detection, along with machine learning (ML) and prognostics and health management of Ni-Zn batteries are highlighted, as these open the door to future research directions. This comprehensive review should serve as a resource for researchers, engineers, and industry experts aiming to advance and commercialize dependable, high-performing Ni-Zn battery technology for a sustainable energy future.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
17.30
自引率
0.00%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信