Cracking Sensitivity Analysis of Red Clay With Pre-Crack Under Three-Point Bending

IF 3.1 2区 材料科学 Q2 ENGINEERING, MECHANICAL
Hongyan Ma, Xiaobin Yan, Peiyuan Cheng, Song Xu, Yanping Zhang, Sihan Li
{"title":"Cracking Sensitivity Analysis of Red Clay With Pre-Crack Under Three-Point Bending","authors":"Hongyan Ma,&nbsp;Xiaobin Yan,&nbsp;Peiyuan Cheng,&nbsp;Song Xu,&nbsp;Yanping Zhang,&nbsp;Sihan Li","doi":"10.1111/ffe.14522","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Red clay is highly susceptible to cracking due to its nature, and the reduction in strength caused by cracking can lead to engineering disasters. To investigate the cracking sensitivity of red clay, a homogeneous fracture model of red clay based on the cohesive zone model was established using ABAQUS in this work, the reliability of the model was verified through a three-point bending test, and then the crack propagation process and sensitivity to test factors of red clay were further analyzed. The results show that the fracture simulation of the cohesive zone model is in good agreement with the test results, confirming by the high reliability. The depth of prefabricated cracks and fulcrum spacing had the significant effects on the crack path, and the decrease of prefabricated crack depth and fulcrum spacing led to the increase of critical load. Meanwhile, the loading rate had little effect on the load–displacement curves.</p>\n </div>","PeriodicalId":12298,"journal":{"name":"Fatigue & Fracture of Engineering Materials & Structures","volume":"48 2","pages":"885-899"},"PeriodicalIF":3.1000,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fatigue & Fracture of Engineering Materials & Structures","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ffe.14522","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Red clay is highly susceptible to cracking due to its nature, and the reduction in strength caused by cracking can lead to engineering disasters. To investigate the cracking sensitivity of red clay, a homogeneous fracture model of red clay based on the cohesive zone model was established using ABAQUS in this work, the reliability of the model was verified through a three-point bending test, and then the crack propagation process and sensitivity to test factors of red clay were further analyzed. The results show that the fracture simulation of the cohesive zone model is in good agreement with the test results, confirming by the high reliability. The depth of prefabricated cracks and fulcrum spacing had the significant effects on the crack path, and the decrease of prefabricated crack depth and fulcrum spacing led to the increase of critical load. Meanwhile, the loading rate had little effect on the load–displacement curves.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.30
自引率
18.90%
发文量
256
审稿时长
4 months
期刊介绍: Fatigue & Fracture of Engineering Materials & Structures (FFEMS) encompasses the broad topic of structural integrity which is founded on the mechanics of fatigue and fracture, and is concerned with the reliability and effectiveness of various materials and structural components of any scale or geometry. The editors publish original contributions that will stimulate the intellectual innovation that generates elegant, effective and economic engineering designs. The journal is interdisciplinary and includes papers from scientists and engineers in the fields of materials science, mechanics, physics, chemistry, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信