Predicting the Electrical Behavior of Colored Photovoltaic Modules Integrating Absorptive or Diffusive Layers or PMMA Films Doped with Organic Chromophores
Martina Pelle, Irene Motta, Gabriella Gonnella, Alessio Dessì, Lidia Armelao, Gregorio Bottaro, Massimo Calamante, Alessandro Mordini, David Moser
{"title":"Predicting the Electrical Behavior of Colored Photovoltaic Modules Integrating Absorptive or Diffusive Layers or PMMA Films Doped with Organic Chromophores","authors":"Martina Pelle, Irene Motta, Gabriella Gonnella, Alessio Dessì, Lidia Armelao, Gregorio Bottaro, Massimo Calamante, Alessandro Mordini, David Moser","doi":"10.1002/solr.202400570","DOIUrl":null,"url":null,"abstract":"<p>The advancement of photovoltaic (PV) technology is critical for sustainable energy production, with silicon-based solar cells being the most prevalent due to their efficiency and cost-effectiveness. In recent years, the use of materials to change the color of conventional silicon-based PV cells, materials that can be laminated or not during the construction of the PV module, has become widespread. Colored PV cells offer aesthetic versatility, making them suitable for integrated architectural applications. However, these materials affect the performance of the final product. This study focuses on developing a predictive model for the performance of colored silicon PV cells. A comprehensive approach combining experimental data and computational simulations is employed to understand the impact of various colors on the electrical performance of colored PV modules, based on the optical properties of the colored layers. The model demonstrates high accuracy across a range of coloring technologies, including selective absorbers, diffusive layers, and fluorescent materials. The developed model accurately predicts the performance metrics of colored PV cells, providing valuable insights for optimizing design and material selection.</p>","PeriodicalId":230,"journal":{"name":"Solar RRL","volume":"9 1","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/solr.202400570","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar RRL","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/solr.202400570","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
The advancement of photovoltaic (PV) technology is critical for sustainable energy production, with silicon-based solar cells being the most prevalent due to their efficiency and cost-effectiveness. In recent years, the use of materials to change the color of conventional silicon-based PV cells, materials that can be laminated or not during the construction of the PV module, has become widespread. Colored PV cells offer aesthetic versatility, making them suitable for integrated architectural applications. However, these materials affect the performance of the final product. This study focuses on developing a predictive model for the performance of colored silicon PV cells. A comprehensive approach combining experimental data and computational simulations is employed to understand the impact of various colors on the electrical performance of colored PV modules, based on the optical properties of the colored layers. The model demonstrates high accuracy across a range of coloring technologies, including selective absorbers, diffusive layers, and fluorescent materials. The developed model accurately predicts the performance metrics of colored PV cells, providing valuable insights for optimizing design and material selection.
Solar RRLPhysics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
12.10
自引率
6.30%
发文量
460
期刊介绍:
Solar RRL, formerly known as Rapid Research Letters, has evolved to embrace a broader and more encompassing format. We publish Research Articles and Reviews covering all facets of solar energy conversion. This includes, but is not limited to, photovoltaics and solar cells (both established and emerging systems), as well as the development, characterization, and optimization of materials and devices. Additionally, we cover topics such as photovoltaic modules and systems, their installation and deployment, photocatalysis, solar fuels, photothermal and photoelectrochemical solar energy conversion, energy distribution, grid issues, and other relevant aspects. Join us in exploring the latest advancements in solar energy conversion research.