Bubble plume effects on the flotation kinetics of nonmetallic inclusions based on experimental observations

IF 1.8 4区 材料科学 Q2 MATERIALS SCIENCE, CERAMICS
Luís Otávio Z. Falsetti, Florian Charruault, René Delfos, Bruno Luchini, Dirk van der Plas, Victor C. Pandolfelli
{"title":"Bubble plume effects on the flotation kinetics of nonmetallic inclusions based on experimental observations","authors":"Luís Otávio Z. Falsetti,&nbsp;Florian Charruault,&nbsp;René Delfos,&nbsp;Bruno Luchini,&nbsp;Dirk van der Plas,&nbsp;Victor C. Pandolfelli","doi":"10.1111/ijac.14972","DOIUrl":null,"url":null,"abstract":"<p>Steelmaking has shown an increasing concern toward nonmetallic inclusions, leading to new technologies in the secondary metallurgy of steel. Although the typical inclusion removal procedure is by injecting inert gas into the ladle, this vessel does not fulfill all the requirements to accept a porous structure tailored to produce “clean steels.” Consequently, the spotlight has moved to the tundish, the last vessel before solidification, in which gas injection can continuously operate. Therefore, this work focuses on understanding the influence of typical gas flow rates (10–60 NL/min) on the kinetics of inclusion flotation, considering two bubble diameters (0.6 and 1.1 mm). For this purpose, experimental measurements were conducted in a water model, where glass hollow spheres played the role of inclusions, and their concentration was fitted by an exponential decay. In general, injecting bubbles into the system contributed positively to a faster and greater flotation of particles. The smaller bubbles led to a higher maximum efficiency, whereas the larger ones allowed a shorter time scale (i.e., a faster removal), defining a trade-off to tune the bubble size. Regarding the gas flow rate, the results indicate an optimum range to decrease the time scale, and suggestions for bubble curtains in tundishes are drawn.</p>","PeriodicalId":13903,"journal":{"name":"International Journal of Applied Ceramic Technology","volume":"22 2","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Ceramic Technology","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ijac.14972","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

Steelmaking has shown an increasing concern toward nonmetallic inclusions, leading to new technologies in the secondary metallurgy of steel. Although the typical inclusion removal procedure is by injecting inert gas into the ladle, this vessel does not fulfill all the requirements to accept a porous structure tailored to produce “clean steels.” Consequently, the spotlight has moved to the tundish, the last vessel before solidification, in which gas injection can continuously operate. Therefore, this work focuses on understanding the influence of typical gas flow rates (10–60 NL/min) on the kinetics of inclusion flotation, considering two bubble diameters (0.6 and 1.1 mm). For this purpose, experimental measurements were conducted in a water model, where glass hollow spheres played the role of inclusions, and their concentration was fitted by an exponential decay. In general, injecting bubbles into the system contributed positively to a faster and greater flotation of particles. The smaller bubbles led to a higher maximum efficiency, whereas the larger ones allowed a shorter time scale (i.e., a faster removal), defining a trade-off to tune the bubble size. Regarding the gas flow rate, the results indicate an optimum range to decrease the time scale, and suggestions for bubble curtains in tundishes are drawn.

求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Applied Ceramic Technology
International Journal of Applied Ceramic Technology 工程技术-材料科学:硅酸盐
CiteScore
3.90
自引率
9.50%
发文量
280
审稿时长
4.5 months
期刊介绍: The International Journal of Applied Ceramic Technology publishes cutting edge applied research and development work focused on commercialization of engineered ceramics, products and processes. The publication also explores the barriers to commercialization, design and testing, environmental health issues, international standardization activities, databases, and cost models. Designed to get high quality information to end-users quickly, the peer process is led by an editorial board of experts from industry, government, and universities. Each issue focuses on a high-interest, high-impact topic plus includes a range of papers detailing applications of ceramics. Papers on all aspects of applied ceramics are welcome including those in the following areas: Nanotechnology applications; Ceramic Armor; Ceramic and Technology for Energy Applications (e.g., Fuel Cells, Batteries, Solar, Thermoelectric, and HT Superconductors); Ceramic Matrix Composites; Functional Materials; Thermal and Environmental Barrier Coatings; Bioceramic Applications; Green Manufacturing; Ceramic Processing; Glass Technology; Fiber optics; Ceramics in Environmental Applications; Ceramics in Electronic, Photonic and Magnetic Applications;
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信