Rapid Emulation of Spatially Resolved Temperature Response to Effective Radiative Forcing

IF 4.4 2区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES
Christopher B. Womack, Paolo Giani, Sebastian D. Eastham, Noelle E. Selin
{"title":"Rapid Emulation of Spatially Resolved Temperature Response to Effective Radiative Forcing","authors":"Christopher B. Womack,&nbsp;Paolo Giani,&nbsp;Sebastian D. Eastham,&nbsp;Noelle E. Selin","doi":"10.1029/2024MS004523","DOIUrl":null,"url":null,"abstract":"<p>Effective assessment of potential climate impacts requires the ability to rapidly predict the time-varying response of climate variables. This prediction must be able to consider different combinations of forcing agents at high resolution. Full-scale ESMs are too computationally intensive to run large scenario ensembles due to their long lead times and high costs. Faster approaches such as intermediate complexity modeling and pattern scaling are limited by low resolution and invariant response patterns, respectively. We propose a generalizable framework for emulating climate variables to overcome these issues, representing the climate system through spatially resolved impulse response functions. We derive impulse response functions by directly deconvolving effective radiative forcing and near-surface air temperature time series. This enables rapid emulation of new scenarios through convolution and derivation of other impulse response functions from any forcing to its response. We present results from an application to near-surface air temperature based on CMIP6 data. We evaluate emulator performance across 5 CMIP6 experiments including the SSPs, demonstrating accurate emulation of global mean and spatially resolved temperature change with respect to CMIP6 ensemble outputs. Global mean relative error in emulated temperature averages 1.49% in mid-century and 1.25% by end-of-century. These errors are likely driven by state-dependent climate feedbacks, such as the non-linear effects of Arctic sea ice melt. We additionally show an illustrative example of our emulator for policy evaluation and impact analysis, emulating spatially resolved temperature change for a 1,000 member scenario ensemble in less than a second.</p>","PeriodicalId":14881,"journal":{"name":"Journal of Advances in Modeling Earth Systems","volume":"17 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024MS004523","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advances in Modeling Earth Systems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024MS004523","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Effective assessment of potential climate impacts requires the ability to rapidly predict the time-varying response of climate variables. This prediction must be able to consider different combinations of forcing agents at high resolution. Full-scale ESMs are too computationally intensive to run large scenario ensembles due to their long lead times and high costs. Faster approaches such as intermediate complexity modeling and pattern scaling are limited by low resolution and invariant response patterns, respectively. We propose a generalizable framework for emulating climate variables to overcome these issues, representing the climate system through spatially resolved impulse response functions. We derive impulse response functions by directly deconvolving effective radiative forcing and near-surface air temperature time series. This enables rapid emulation of new scenarios through convolution and derivation of other impulse response functions from any forcing to its response. We present results from an application to near-surface air temperature based on CMIP6 data. We evaluate emulator performance across 5 CMIP6 experiments including the SSPs, demonstrating accurate emulation of global mean and spatially resolved temperature change with respect to CMIP6 ensemble outputs. Global mean relative error in emulated temperature averages 1.49% in mid-century and 1.25% by end-of-century. These errors are likely driven by state-dependent climate feedbacks, such as the non-linear effects of Arctic sea ice melt. We additionally show an illustrative example of our emulator for policy evaluation and impact analysis, emulating spatially resolved temperature change for a 1,000 member scenario ensemble in less than a second.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Advances in Modeling Earth Systems
Journal of Advances in Modeling Earth Systems METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
11.40
自引率
11.80%
发文量
241
审稿时长
>12 weeks
期刊介绍: The Journal of Advances in Modeling Earth Systems (JAMES) is committed to advancing the science of Earth systems modeling by offering high-quality scientific research through online availability and open access licensing. JAMES invites authors and readers from the international Earth systems modeling community. Open access. Articles are available free of charge for everyone with Internet access to view and download. Formal peer review. Supplemental material, such as code samples, images, and visualizations, is published at no additional charge. No additional charge for color figures. Modest page charges to cover production costs. Articles published in high-quality full text PDF, HTML, and XML. Internal and external reference linking, DOI registration, and forward linking via CrossRef.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信