{"title":"Global Climatology of Rapid Expansion of Tropical Cyclones","authors":"Weiling Zhang, Kelvin T. F. Chan, Lifeng Xu","doi":"10.1002/joc.8692","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Rapid expansion (RE) of tropical cyclones (TCs) is a structural evolution that specifies the dramatic geometric synthesis increase in TC size. Its destructive potential is comparable or even more pronounced than that by the TC rapid intensification but receives limited attention. In this study, we utilise the ERA5-derived 41-year (1979–2019) global climatology of TC outer size data (i.e., effective azimuthal-area-average radius of 34-kt gale-force surface winds, R34<sub>EFF</sub>) to define RE and reveal the global climatology of RE for the first time, where RE is defined as the 90th percentile of global expanding samples (i.e., ΔR34<sub>EFF</sub> > 50 NM per 24 h; 1 NM = 1.852 km). Statistics show that 32% of all TCs underwent RE at least once during their lifetime. Climatologically, the proportion of RE decreased significantly in the globe (7%) and Northern Hemisphere (9%), particularly in the western North Pacific (8%). Seasonally, the RE proportion peaks in the early and late TC seasons. Spatiotemporally, distinct spatiotemporal variations and interdecadal changes of RE are found. In view of TC lifecycle, TCs likely reach their lifetime maximum intensity and lifetime maximum size after RE initiation. The duration of RE varies widely from basin to basin, while its seasonal variability is relatively smaller. Regarding the relationship between RE and TC intensity, the intensity of rapidly expanding TCs may increase or decrease with the former being more likely. The initial size and intensity of rapidly expanding TCs tend to be small (45 NM) and weak (60 kt), respectively. This study advances the understanding of RE from a global perspective, laying important groundwork for future study.</p>\n </div>","PeriodicalId":13779,"journal":{"name":"International Journal of Climatology","volume":"45 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Climatology","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/joc.8692","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Rapid expansion (RE) of tropical cyclones (TCs) is a structural evolution that specifies the dramatic geometric synthesis increase in TC size. Its destructive potential is comparable or even more pronounced than that by the TC rapid intensification but receives limited attention. In this study, we utilise the ERA5-derived 41-year (1979–2019) global climatology of TC outer size data (i.e., effective azimuthal-area-average radius of 34-kt gale-force surface winds, R34EFF) to define RE and reveal the global climatology of RE for the first time, where RE is defined as the 90th percentile of global expanding samples (i.e., ΔR34EFF > 50 NM per 24 h; 1 NM = 1.852 km). Statistics show that 32% of all TCs underwent RE at least once during their lifetime. Climatologically, the proportion of RE decreased significantly in the globe (7%) and Northern Hemisphere (9%), particularly in the western North Pacific (8%). Seasonally, the RE proportion peaks in the early and late TC seasons. Spatiotemporally, distinct spatiotemporal variations and interdecadal changes of RE are found. In view of TC lifecycle, TCs likely reach their lifetime maximum intensity and lifetime maximum size after RE initiation. The duration of RE varies widely from basin to basin, while its seasonal variability is relatively smaller. Regarding the relationship between RE and TC intensity, the intensity of rapidly expanding TCs may increase or decrease with the former being more likely. The initial size and intensity of rapidly expanding TCs tend to be small (45 NM) and weak (60 kt), respectively. This study advances the understanding of RE from a global perspective, laying important groundwork for future study.
期刊介绍:
The International Journal of Climatology aims to span the well established but rapidly growing field of climatology, through the publication of research papers, short communications, major reviews of progress and reviews of new books and reports in the area of climate science. The Journal’s main role is to stimulate and report research in climatology, from the expansive fields of the atmospheric, biophysical, engineering and social sciences. Coverage includes: Climate system science; Local to global scale climate observations and modelling; Seasonal to interannual climate prediction; Climatic variability and climate change; Synoptic, dynamic and urban climatology, hydroclimatology, human bioclimatology, ecoclimatology, dendroclimatology, palaeoclimatology, marine climatology and atmosphere-ocean interactions; Application of climatological knowledge to environmental assessment and management and economic production; Climate and society interactions