Global Climatology of Rapid Expansion of Tropical Cyclones

IF 3.5 3区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES
Weiling Zhang, Kelvin T. F. Chan, Lifeng Xu
{"title":"Global Climatology of Rapid Expansion of Tropical Cyclones","authors":"Weiling Zhang,&nbsp;Kelvin T. F. Chan,&nbsp;Lifeng Xu","doi":"10.1002/joc.8692","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Rapid expansion (RE) of tropical cyclones (TCs) is a structural evolution that specifies the dramatic geometric synthesis increase in TC size. Its destructive potential is comparable or even more pronounced than that by the TC rapid intensification but receives limited attention. In this study, we utilise the ERA5-derived 41-year (1979–2019) global climatology of TC outer size data (i.e., effective azimuthal-area-average radius of 34-kt gale-force surface winds, R34<sub>EFF</sub>) to define RE and reveal the global climatology of RE for the first time, where RE is defined as the 90th percentile of global expanding samples (i.e., ΔR34<sub>EFF</sub> &gt; 50 NM per 24 h; 1 NM = 1.852 km). Statistics show that 32% of all TCs underwent RE at least once during their lifetime. Climatologically, the proportion of RE decreased significantly in the globe (7%) and Northern Hemisphere (9%), particularly in the western North Pacific (8%). Seasonally, the RE proportion peaks in the early and late TC seasons. Spatiotemporally, distinct spatiotemporal variations and interdecadal changes of RE are found. In view of TC lifecycle, TCs likely reach their lifetime maximum intensity and lifetime maximum size after RE initiation. The duration of RE varies widely from basin to basin, while its seasonal variability is relatively smaller. Regarding the relationship between RE and TC intensity, the intensity of rapidly expanding TCs may increase or decrease with the former being more likely. The initial size and intensity of rapidly expanding TCs tend to be small (45 NM) and weak (60 kt), respectively. This study advances the understanding of RE from a global perspective, laying important groundwork for future study.</p>\n </div>","PeriodicalId":13779,"journal":{"name":"International Journal of Climatology","volume":"45 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Climatology","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/joc.8692","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Rapid expansion (RE) of tropical cyclones (TCs) is a structural evolution that specifies the dramatic geometric synthesis increase in TC size. Its destructive potential is comparable or even more pronounced than that by the TC rapid intensification but receives limited attention. In this study, we utilise the ERA5-derived 41-year (1979–2019) global climatology of TC outer size data (i.e., effective azimuthal-area-average radius of 34-kt gale-force surface winds, R34EFF) to define RE and reveal the global climatology of RE for the first time, where RE is defined as the 90th percentile of global expanding samples (i.e., ΔR34EFF > 50 NM per 24 h; 1 NM = 1.852 km). Statistics show that 32% of all TCs underwent RE at least once during their lifetime. Climatologically, the proportion of RE decreased significantly in the globe (7%) and Northern Hemisphere (9%), particularly in the western North Pacific (8%). Seasonally, the RE proportion peaks in the early and late TC seasons. Spatiotemporally, distinct spatiotemporal variations and interdecadal changes of RE are found. In view of TC lifecycle, TCs likely reach their lifetime maximum intensity and lifetime maximum size after RE initiation. The duration of RE varies widely from basin to basin, while its seasonal variability is relatively smaller. Regarding the relationship between RE and TC intensity, the intensity of rapidly expanding TCs may increase or decrease with the former being more likely. The initial size and intensity of rapidly expanding TCs tend to be small (45 NM) and weak (60 kt), respectively. This study advances the understanding of RE from a global perspective, laying important groundwork for future study.

求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Climatology
International Journal of Climatology 地学-气象与大气科学
CiteScore
7.50
自引率
7.70%
发文量
417
审稿时长
4 months
期刊介绍: The International Journal of Climatology aims to span the well established but rapidly growing field of climatology, through the publication of research papers, short communications, major reviews of progress and reviews of new books and reports in the area of climate science. The Journal’s main role is to stimulate and report research in climatology, from the expansive fields of the atmospheric, biophysical, engineering and social sciences. Coverage includes: Climate system science; Local to global scale climate observations and modelling; Seasonal to interannual climate prediction; Climatic variability and climate change; Synoptic, dynamic and urban climatology, hydroclimatology, human bioclimatology, ecoclimatology, dendroclimatology, palaeoclimatology, marine climatology and atmosphere-ocean interactions; Application of climatological knowledge to environmental assessment and management and economic production; Climate and society interactions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信