{"title":"Distribution network clustering for reactive power planning and distributed voltage control","authors":"Saeed Hasanvand, Hossein Sobhani, Mohammad-Hassan Khooban","doi":"10.1049/gtd2.70002","DOIUrl":null,"url":null,"abstract":"<p>According to the inherent characteristics of power systems, the voltage reduction is different in each part of power system. The voltage drop is directly proportional to the demand current and the total impedance between the source and the loads. Therefore, in distribution system voltage/VAr control is more important rather than transmission network, because of higher line R/X ratios rather than the transmission network and customers or end-users receive power through a higher impedance and experience a larger voltage drop in distribution system. This work presents multistage optimal reactive power planning and clustering the distribution network to implement distributed voltage/VAr control approach. At first, reactive power planning to reduce active power losses and save costs has been investigated. According to the result of the first stage, the power system is clustered into some partitions using spectral clustering and reactive power weighted matrix. The optimal number of clusters has been evaluated and determined by four criteria and the clusters are defined by fuzzy c-mean method which gives better vision about cluster boundaries. Finally, a sensitivity-based approach has been used to determine the precise location of VAr resources and the results show that voltage/VAr control in a clustered distribution system has more acceptable outcomes rather than centralized voltage/VAr control in the whole distribution network.</p>","PeriodicalId":13261,"journal":{"name":"Iet Generation Transmission & Distribution","volume":"19 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/gtd2.70002","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Generation Transmission & Distribution","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/gtd2.70002","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
According to the inherent characteristics of power systems, the voltage reduction is different in each part of power system. The voltage drop is directly proportional to the demand current and the total impedance between the source and the loads. Therefore, in distribution system voltage/VAr control is more important rather than transmission network, because of higher line R/X ratios rather than the transmission network and customers or end-users receive power through a higher impedance and experience a larger voltage drop in distribution system. This work presents multistage optimal reactive power planning and clustering the distribution network to implement distributed voltage/VAr control approach. At first, reactive power planning to reduce active power losses and save costs has been investigated. According to the result of the first stage, the power system is clustered into some partitions using spectral clustering and reactive power weighted matrix. The optimal number of clusters has been evaluated and determined by four criteria and the clusters are defined by fuzzy c-mean method which gives better vision about cluster boundaries. Finally, a sensitivity-based approach has been used to determine the precise location of VAr resources and the results show that voltage/VAr control in a clustered distribution system has more acceptable outcomes rather than centralized voltage/VAr control in the whole distribution network.
期刊介绍:
IET Generation, Transmission & Distribution is intended as a forum for the publication and discussion of current practice and future developments in electric power generation, transmission and distribution. Practical papers in which examples of good present practice can be described and disseminated are particularly sought. Papers of high technical merit relying on mathematical arguments and computation will be considered, but authors are asked to relegate, as far as possible, the details of analysis to an appendix.
The scope of IET Generation, Transmission & Distribution includes the following:
Design of transmission and distribution systems
Operation and control of power generation
Power system management, planning and economics
Power system operation, protection and control
Power system measurement and modelling
Computer applications and computational intelligence in power flexible AC or DC transmission systems
Special Issues. Current Call for papers:
Next Generation of Synchrophasor-based Power System Monitoring, Operation and Control - https://digital-library.theiet.org/files/IET_GTD_CFP_NGSPSMOC.pdf