Pedro Henrique Salomão Ganança, Clarissa Alves da Rosa, Albertina Pimentel Lima, Rafael de Fraga, Kelly Torralvo, Leandro Lacerda Giacomin, Amanda Frederico Mortati, Quêzia Leandro de Moura Guerreiro, Susan Aragón, William Ernest Magnusson
{"title":"Recovery of lizard assembages 10 years after reduced-impact logging in central-eastern Amazonia","authors":"Pedro Henrique Salomão Ganança, Clarissa Alves da Rosa, Albertina Pimentel Lima, Rafael de Fraga, Kelly Torralvo, Leandro Lacerda Giacomin, Amanda Frederico Mortati, Quêzia Leandro de Moura Guerreiro, Susan Aragón, William Ernest Magnusson","doi":"10.1111/btp.13400","DOIUrl":null,"url":null,"abstract":"<p>Understanding changes in species composition due to human-induced habitat modification and environmental filtering is essential for formulating effective conservation strategies. Species turnover resulting from reduced-impact logging (RIL) is expected in the short term, generally with species adapted to open areas replacing those dependent on old-growth forest. However, little is known about how RIL activities influence assemblages after the perturbation ceased. We sampled lizards across an edaphic and vegetation-structure gradient in 64 plots in the Brazilian Amazon to test the hypothesis that changes in assemblage composition and proportion of heliothermic species are due to canopy openness resulting from ceased RIL activities and individual tree falls or to other environmental gradients. Contrary to expectations, canopy openness did not significantly affect the overall composition of lizard assemblages, but nearby unforested areas influenced assemblage composition, resulting in a higher proportion of heliothermic species. The composition of lizard assemblages was also significantly influenced by the distance to the nearest water body, vegetation height, and soil sand content. However, leaf litter height did not have a detectable impact on the composition of lizard assemblages. We conclude that short-term changes in species composition due to habitat modification by RIL do not persist in the long term after the perturbation ceases, and the assemblages may recover as vegetation regenerates. Although lizard species respond to spatial and temporal variation in environmental characteristics, we found evidence that lizard assemblages recover as reduced-impact logging (RIL) activities cease and vegetation regenerates.</p><p>Abstract in Portuguese is available with online material.</p>","PeriodicalId":8982,"journal":{"name":"Biotropica","volume":"57 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotropica","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/btp.13400","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding changes in species composition due to human-induced habitat modification and environmental filtering is essential for formulating effective conservation strategies. Species turnover resulting from reduced-impact logging (RIL) is expected in the short term, generally with species adapted to open areas replacing those dependent on old-growth forest. However, little is known about how RIL activities influence assemblages after the perturbation ceased. We sampled lizards across an edaphic and vegetation-structure gradient in 64 plots in the Brazilian Amazon to test the hypothesis that changes in assemblage composition and proportion of heliothermic species are due to canopy openness resulting from ceased RIL activities and individual tree falls or to other environmental gradients. Contrary to expectations, canopy openness did not significantly affect the overall composition of lizard assemblages, but nearby unforested areas influenced assemblage composition, resulting in a higher proportion of heliothermic species. The composition of lizard assemblages was also significantly influenced by the distance to the nearest water body, vegetation height, and soil sand content. However, leaf litter height did not have a detectable impact on the composition of lizard assemblages. We conclude that short-term changes in species composition due to habitat modification by RIL do not persist in the long term after the perturbation ceases, and the assemblages may recover as vegetation regenerates. Although lizard species respond to spatial and temporal variation in environmental characteristics, we found evidence that lizard assemblages recover as reduced-impact logging (RIL) activities cease and vegetation regenerates.
Abstract in Portuguese is available with online material.
期刊介绍:
Ranked by the ISI index, Biotropica is a highly regarded source of original research on the ecology, conservation and management of all tropical ecosystems, and on the evolution, behavior, and population biology of tropical organisms. Published on behalf of the Association of Tropical Biology and Conservation, the journal''s Special Issues and Special Sections quickly become indispensable references for researchers in the field. Biotropica publishes timely Papers, Reviews, Commentaries, and Insights. Commentaries generate thought-provoking ideas that frequently initiate fruitful debate and discussion, while Reviews provide authoritative and analytical overviews of topics of current conservation or ecological importance. The newly instituted category Insights replaces Short Communications.