Tidally Driven Intra-Seasonal Oscillations in the Thermosphere From TIEGCM-ICON and Connections to the Madden-Julian Oscillation

IF 2.6 2区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS
Federico Gasperini, Astrid Maute, Houjun Wang, Owen McClung, Deepali Aggarwal, Komal Kumari
{"title":"Tidally Driven Intra-Seasonal Oscillations in the Thermosphere From TIEGCM-ICON and Connections to the Madden-Julian Oscillation","authors":"Federico Gasperini,&nbsp;Astrid Maute,&nbsp;Houjun Wang,&nbsp;Owen McClung,&nbsp;Deepali Aggarwal,&nbsp;Komal Kumari","doi":"10.1029/2024JA033178","DOIUrl":null,"url":null,"abstract":"<p>Recent evidence has revealed that strong coupling between the lower atmosphere and the thermosphere (<span></span><math>\n <semantics>\n <mrow>\n <mo>&gt;</mo>\n </mrow>\n <annotation> ${ &gt;} $</annotation>\n </semantics></math>100 km) occurs on intra-seasonal (IS) timescales (<span></span><math>\n <semantics>\n <mrow>\n <mo>∼</mo>\n </mrow>\n <annotation> ${\\sim} $</annotation>\n </semantics></math> 30–90 days). The Madden-Julian Oscillation (MJO), a key source of IS variability in tropical convection and circulation, influences the generation and propagation of atmospheric tides and is believed to be a significant driver of thermospheric IS oscillations (ISOs). However, limited satellite observations in the “thermospheric gap” (100–300 km) and challenges faced by numerical models in characterizing this region have hindered a comprehensive understanding of this connection. This study uses an Ionospheric Connection Explorer (ICON)-adapted version of the Thermosphere Ionosphere Electrodynamics General Circulation Model, incorporating lower boundary tides from Michelson Interferometer for Global High-resolution Thermospheric Imaging (MIGHTI) observations, to quantify the impact of the upward-propagating tidal spectrum on thermospheric ISOs and elucidate connections to the MJO. Thermospheric zonal and diurnal mean zonal winds exhibit prominent (<span></span><math>\n <semantics>\n <mrow>\n <mo>∼</mo>\n </mrow>\n <annotation> ${\\sim} $</annotation>\n </semantics></math> 20 m/s) tidally driven ISOs throughout 2020–2021, largest at low latitudes <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mo>±</mo>\n <mn>30</mn>\n <mo>°</mo>\n </mrow>\n <mo>)</mo>\n </mrow>\n <annotation> $(\\pm 30{}^{\\circ})$</annotation>\n </semantics></math> near 110–150 km altitude. Correlation analyses confirm a robust connection <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>r</mi>\n <mo>&gt;</mo>\n <mn>0.6</mn>\n </mrow>\n <mo>)</mo>\n </mrow>\n <annotation> $(r &gt; 0.6)$</annotation>\n </semantics></math> between thermospheric ISOs, tides, and the MJO. Additionally, Hovmöller diagrams show eastward tidal propagation consistent with the MJO and concurrent Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) observations. This study demonstrates that vertically propagating tides play a crucial role in linking IS variability from the lower atmosphere to the thermosphere, with the MJO identified as a primary driver of this whole-atmosphere teleconnection. Understanding these connections is vital for advancing our knowledge in space physics, particularly regarding the dynamics of the upper atmosphere and ionosphere.</p>","PeriodicalId":15894,"journal":{"name":"Journal of Geophysical Research: Space Physics","volume":"130 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Space Physics","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JA033178","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Recent evidence has revealed that strong coupling between the lower atmosphere and the thermosphere ( > ${ >} $ 100 km) occurs on intra-seasonal (IS) timescales ( ${\sim} $ 30–90 days). The Madden-Julian Oscillation (MJO), a key source of IS variability in tropical convection and circulation, influences the generation and propagation of atmospheric tides and is believed to be a significant driver of thermospheric IS oscillations (ISOs). However, limited satellite observations in the “thermospheric gap” (100–300 km) and challenges faced by numerical models in characterizing this region have hindered a comprehensive understanding of this connection. This study uses an Ionospheric Connection Explorer (ICON)-adapted version of the Thermosphere Ionosphere Electrodynamics General Circulation Model, incorporating lower boundary tides from Michelson Interferometer for Global High-resolution Thermospheric Imaging (MIGHTI) observations, to quantify the impact of the upward-propagating tidal spectrum on thermospheric ISOs and elucidate connections to the MJO. Thermospheric zonal and diurnal mean zonal winds exhibit prominent ( ${\sim} $ 20 m/s) tidally driven ISOs throughout 2020–2021, largest at low latitudes ( ± 30 ° ) $(\pm 30{}^{\circ})$ near 110–150 km altitude. Correlation analyses confirm a robust connection ( r > 0.6 ) $(r > 0.6)$ between thermospheric ISOs, tides, and the MJO. Additionally, Hovmöller diagrams show eastward tidal propagation consistent with the MJO and concurrent Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) observations. This study demonstrates that vertically propagating tides play a crucial role in linking IS variability from the lower atmosphere to the thermosphere, with the MJO identified as a primary driver of this whole-atmosphere teleconnection. Understanding these connections is vital for advancing our knowledge in space physics, particularly regarding the dynamics of the upper atmosphere and ionosphere.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geophysical Research: Space Physics
Journal of Geophysical Research: Space Physics Earth and Planetary Sciences-Geophysics
CiteScore
5.30
自引率
35.70%
发文量
570
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信