Does Encapsulation of π-Conjugated Polymer Nanoparticles within Biodegradable PEG–PLGA Matrices Mitigate Photoinduced Free Radical Production and Phototoxicity?

IF 3.7 4区 医学 Q2 PHARMACOLOGY & PHARMACY
Paola Modicano, Marie-Luise Trutschel, Thüong Phan-Xuan, Bruno F. E. Matarèse, Laura Urbano, Mark Green, Karsten Mäder, Lea Ann Dailey
{"title":"Does Encapsulation of π-Conjugated Polymer Nanoparticles within Biodegradable PEG–PLGA Matrices Mitigate Photoinduced Free Radical Production and Phototoxicity?","authors":"Paola Modicano,&nbsp;Marie-Luise Trutschel,&nbsp;Thüong Phan-Xuan,&nbsp;Bruno F. E. Matarèse,&nbsp;Laura Urbano,&nbsp;Mark Green,&nbsp;Karsten Mäder,&nbsp;Lea Ann Dailey","doi":"10.1002/adtp.202400190","DOIUrl":null,"url":null,"abstract":"<p>Lipophilic π-conjugated polymers (CPs) encapsulated within self-assembling diblock copolymer poly(ethylene glycol) methyl ether-<i>block</i>-poly(lactide-<i>co</i>-glycolide) (PEG–PLGA) nanoparticles, are interesting candidates for photodynamic and photothermal therapies. Upon irradiation, CPs generate reactive oxygen species (ROS), which may either cause local phototoxicity or could be exploited for photodynamic therapy. The propensity of the PEG–PLGA matrix to scavenge ROS has never been investigated. Here the ability of two PEG–PLGA structures (PEG<sub>2 kDa</sub>–PLGA<sub>4.5 kDa</sub> vs PEG<sub>5 kDa</sub>–PLGA<sub>55 kDa</sub>) to mitigate the release of ROS generated by four different CPs (PFO, F8BT, CN-PPV, and PCPDTBT) following irradiation (5 J cm<sup>−2</sup>) at 385, 455, and 656 nm is studied. The molar content of the PEG–PLGA matrix, rather than the molecular weight or composition, appeared to be the most influential factor, i.e., lower molar concentrations of the matrix polymer are associated with significant increases in phototoxicity. Multivariate analysis reveals that the combination of CP photophysical properties and nanoparticle matrix properties are important for understanding CP nanoparticle-induced phototoxicity.</p>","PeriodicalId":7284,"journal":{"name":"Advanced Therapeutics","volume":"8 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adtp.202400190","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adtp.202400190","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Lipophilic π-conjugated polymers (CPs) encapsulated within self-assembling diblock copolymer poly(ethylene glycol) methyl ether-block-poly(lactide-co-glycolide) (PEG–PLGA) nanoparticles, are interesting candidates for photodynamic and photothermal therapies. Upon irradiation, CPs generate reactive oxygen species (ROS), which may either cause local phototoxicity or could be exploited for photodynamic therapy. The propensity of the PEG–PLGA matrix to scavenge ROS has never been investigated. Here the ability of two PEG–PLGA structures (PEG2 kDa–PLGA4.5 kDa vs PEG5 kDa–PLGA55 kDa) to mitigate the release of ROS generated by four different CPs (PFO, F8BT, CN-PPV, and PCPDTBT) following irradiation (5 J cm−2) at 385, 455, and 656 nm is studied. The molar content of the PEG–PLGA matrix, rather than the molecular weight or composition, appeared to be the most influential factor, i.e., lower molar concentrations of the matrix polymer are associated with significant increases in phototoxicity. Multivariate analysis reveals that the combination of CP photophysical properties and nanoparticle matrix properties are important for understanding CP nanoparticle-induced phototoxicity.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Therapeutics
Advanced Therapeutics Pharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
7.10
自引率
2.20%
发文量
130
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信