Design of a Solar-Wind Hybrid Renewable Energy System for Power Quality Enhancement: A Case Study of 2.5 MW Real Time Domestic Grid

IF 1.8 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
F. Max Savio, S. Vinson Joshua, K. Usha, Muhammad Faheem, Raju Kannadasan, Arfat Ahmad Khan
{"title":"Design of a Solar-Wind Hybrid Renewable Energy System for Power Quality Enhancement: A Case Study of 2.5 MW Real Time Domestic Grid","authors":"F. Max Savio,&nbsp;S. Vinson Joshua,&nbsp;K. Usha,&nbsp;Muhammad Faheem,&nbsp;Raju Kannadasan,&nbsp;Arfat Ahmad Khan","doi":"10.1002/eng2.13101","DOIUrl":null,"url":null,"abstract":"<p>The increasing global energy demand driven by climate change, technological advancements, and population growth necessitates the development of sustainable solutions. This research investigates the design, modeling, and simulation of a 2.5 MW solar-wind hybrid renewable energy system (SWH-RES) optimized for domestic grid applications. A survey conducted across 450 households identified a total energy demand of 2.3 MW, with distinct day and night usage profiles. In response, a hybrid system consisting of a 1.5 MW solar park and a 1 MW wind energy unit was designed to ensure continuous power supply. The system was modeled and simulated using MATLAB, and its performance was evaluated through a detailed Total Harmonic Distortion (THD) analysis. This research addresses the critical need for a sustainable and high-quality power supply by designing, modeling, and simulating a 2.5 MW solar-wind hybrid renewable energy system (SWH-RES) optimized to meet the energy demand of a surveyed 2.3 MW domestic load, while also reducing THD to acceptable levels for improved power quality and grid stability. The results demonstrated a significant reduction in THD, with voltage THD decreasing from 45.48% to 26.20% and current THD from 8.32% to 2.88% after implementing filtering components. These findings underscore the effectiveness of the proposed SWH-RES in providing stable, high-quality power while addressing the growing demand for sustainable energy solutions.</p>","PeriodicalId":72922,"journal":{"name":"Engineering reports : open access","volume":"7 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eng2.13101","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering reports : open access","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eng2.13101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The increasing global energy demand driven by climate change, technological advancements, and population growth necessitates the development of sustainable solutions. This research investigates the design, modeling, and simulation of a 2.5 MW solar-wind hybrid renewable energy system (SWH-RES) optimized for domestic grid applications. A survey conducted across 450 households identified a total energy demand of 2.3 MW, with distinct day and night usage profiles. In response, a hybrid system consisting of a 1.5 MW solar park and a 1 MW wind energy unit was designed to ensure continuous power supply. The system was modeled and simulated using MATLAB, and its performance was evaluated through a detailed Total Harmonic Distortion (THD) analysis. This research addresses the critical need for a sustainable and high-quality power supply by designing, modeling, and simulating a 2.5 MW solar-wind hybrid renewable energy system (SWH-RES) optimized to meet the energy demand of a surveyed 2.3 MW domestic load, while also reducing THD to acceptable levels for improved power quality and grid stability. The results demonstrated a significant reduction in THD, with voltage THD decreasing from 45.48% to 26.20% and current THD from 8.32% to 2.88% after implementing filtering components. These findings underscore the effectiveness of the proposed SWH-RES in providing stable, high-quality power while addressing the growing demand for sustainable energy solutions.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.10
自引率
0.00%
发文量
0
审稿时长
19 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信