F. Max Savio, S. Vinson Joshua, K. Usha, Muhammad Faheem, Raju Kannadasan, Arfat Ahmad Khan
{"title":"Design of a Solar-Wind Hybrid Renewable Energy System for Power Quality Enhancement: A Case Study of 2.5 MW Real Time Domestic Grid","authors":"F. Max Savio, S. Vinson Joshua, K. Usha, Muhammad Faheem, Raju Kannadasan, Arfat Ahmad Khan","doi":"10.1002/eng2.13101","DOIUrl":null,"url":null,"abstract":"<p>The increasing global energy demand driven by climate change, technological advancements, and population growth necessitates the development of sustainable solutions. This research investigates the design, modeling, and simulation of a 2.5 MW solar-wind hybrid renewable energy system (SWH-RES) optimized for domestic grid applications. A survey conducted across 450 households identified a total energy demand of 2.3 MW, with distinct day and night usage profiles. In response, a hybrid system consisting of a 1.5 MW solar park and a 1 MW wind energy unit was designed to ensure continuous power supply. The system was modeled and simulated using MATLAB, and its performance was evaluated through a detailed Total Harmonic Distortion (THD) analysis. This research addresses the critical need for a sustainable and high-quality power supply by designing, modeling, and simulating a 2.5 MW solar-wind hybrid renewable energy system (SWH-RES) optimized to meet the energy demand of a surveyed 2.3 MW domestic load, while also reducing THD to acceptable levels for improved power quality and grid stability. The results demonstrated a significant reduction in THD, with voltage THD decreasing from 45.48% to 26.20% and current THD from 8.32% to 2.88% after implementing filtering components. These findings underscore the effectiveness of the proposed SWH-RES in providing stable, high-quality power while addressing the growing demand for sustainable energy solutions.</p>","PeriodicalId":72922,"journal":{"name":"Engineering reports : open access","volume":"7 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eng2.13101","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering reports : open access","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eng2.13101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The increasing global energy demand driven by climate change, technological advancements, and population growth necessitates the development of sustainable solutions. This research investigates the design, modeling, and simulation of a 2.5 MW solar-wind hybrid renewable energy system (SWH-RES) optimized for domestic grid applications. A survey conducted across 450 households identified a total energy demand of 2.3 MW, with distinct day and night usage profiles. In response, a hybrid system consisting of a 1.5 MW solar park and a 1 MW wind energy unit was designed to ensure continuous power supply. The system was modeled and simulated using MATLAB, and its performance was evaluated through a detailed Total Harmonic Distortion (THD) analysis. This research addresses the critical need for a sustainable and high-quality power supply by designing, modeling, and simulating a 2.5 MW solar-wind hybrid renewable energy system (SWH-RES) optimized to meet the energy demand of a surveyed 2.3 MW domestic load, while also reducing THD to acceptable levels for improved power quality and grid stability. The results demonstrated a significant reduction in THD, with voltage THD decreasing from 45.48% to 26.20% and current THD from 8.32% to 2.88% after implementing filtering components. These findings underscore the effectiveness of the proposed SWH-RES in providing stable, high-quality power while addressing the growing demand for sustainable energy solutions.