Madeline K. Eiken, Justin E. Levine, Shinyeong Lee, Samantha Lukpat, Eleanor M. Plaster, Vikram Bala, Jason R. Spence, Claudia Loebel
{"title":"Polymer Design of Microwell Hydrogels Influences Epithelial–Mesenchymal Interactions During Human Bronchosphere Formation","authors":"Madeline K. Eiken, Justin E. Levine, Shinyeong Lee, Samantha Lukpat, Eleanor M. Plaster, Vikram Bala, Jason R. Spence, Claudia Loebel","doi":"10.1002/anbr.202300110","DOIUrl":null,"url":null,"abstract":"<p>Bronchospheres have emerged as a promising in vitro model toward probing questions on organ development and disease. Several organoid models, including from airway (e.g., bronchial, tracheal) cells, require three-dimensional (3D) Matrigel, a complex mouse tumor-derived matrix that typically leads to heterogeneous size and structures. Synthetic and naturally derived polymeric hydrogels show increased opportunities as an alternative to Matrigel culture. In addition, recent advances in hydrogel-based microcavities (i.e., microwells) have shown improved control over organoid size, structure, and composition. Here, we build upon this approach and describe the fabrication and characterization of microwell hydrogels based on other polymers, including diacrylated poly(ethylene glycol), agarose, methacrylated gelatin, and norbornene-modified hyaluronic acid. Using these microwell hydrogels, human bronchial epithelial cells and lung fibroblasts readily assemble into viable cyst-like bronchospheres. The study shows that the cellular composition regulates the formation and structure of the bronchosphere which also depends on the type and adhesiveness of the hydrogel. Furthermore, both hydrogel type and cellular composition influence the amount and composition of deposited extracellular matrix within the microwells. This hydrogel fabrication platform provides an accessible in vitro culture platform for the formation and growth of bronchospheres which can be extended to the culture of other organoid systems.</p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":"5 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202300110","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nanobiomed Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anbr.202300110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Bronchospheres have emerged as a promising in vitro model toward probing questions on organ development and disease. Several organoid models, including from airway (e.g., bronchial, tracheal) cells, require three-dimensional (3D) Matrigel, a complex mouse tumor-derived matrix that typically leads to heterogeneous size and structures. Synthetic and naturally derived polymeric hydrogels show increased opportunities as an alternative to Matrigel culture. In addition, recent advances in hydrogel-based microcavities (i.e., microwells) have shown improved control over organoid size, structure, and composition. Here, we build upon this approach and describe the fabrication and characterization of microwell hydrogels based on other polymers, including diacrylated poly(ethylene glycol), agarose, methacrylated gelatin, and norbornene-modified hyaluronic acid. Using these microwell hydrogels, human bronchial epithelial cells and lung fibroblasts readily assemble into viable cyst-like bronchospheres. The study shows that the cellular composition regulates the formation and structure of the bronchosphere which also depends on the type and adhesiveness of the hydrogel. Furthermore, both hydrogel type and cellular composition influence the amount and composition of deposited extracellular matrix within the microwells. This hydrogel fabrication platform provides an accessible in vitro culture platform for the formation and growth of bronchospheres which can be extended to the culture of other organoid systems.
期刊介绍:
Advanced NanoBiomed Research will provide an Open Access home for cutting-edge nanomedicine, bioengineering and biomaterials research aimed at improving human health. The journal will capture a broad spectrum of research from increasingly multi- and interdisciplinary fields of the traditional areas of biomedicine, bioengineering and health-related materials science as well as precision and personalized medicine, drug delivery, and artificial intelligence-driven health science.
The scope of Advanced NanoBiomed Research will cover the following key subject areas:
▪ Nanomedicine and nanotechnology, with applications in drug and gene delivery, diagnostics, theranostics, photothermal and photodynamic therapy and multimodal imaging.
▪ Biomaterials, including hydrogels, 2D materials, biopolymers, composites, biodegradable materials, biohybrids and biomimetics (such as artificial cells, exosomes and extracellular vesicles), as well as all organic and inorganic materials for biomedical applications.
▪ Biointerfaces, such as anti-microbial surfaces and coatings, as well as interfaces for cellular engineering, immunoengineering and 3D cell culture.
▪ Biofabrication including (bio)inks and technologies, towards generation of functional tissues and organs.
▪ Tissue engineering and regenerative medicine, including scaffolds and scaffold-free approaches, for bone, ligament, muscle, skin, neural, cardiac tissue engineering and tissue vascularization.
▪ Devices for healthcare applications, disease modelling and treatment, such as diagnostics, lab-on-a-chip, organs-on-a-chip, bioMEMS, bioelectronics, wearables, actuators, soft robotics, and intelligent drug delivery systems.
with a strong focus on applications of these fields, from bench-to-bedside, for treatment of all diseases and disorders, such as infectious, autoimmune, cardiovascular and metabolic diseases, neurological disorders and cancer; including pharmacology and toxicology studies.