Bioactive Coatings on 3D Printed Polycaprolactone Scaffolds for Bone Regeneration: A Novel Murine Femur Defect Model for Examination of the Biomaterial Capacity for Repair

IF 4.3 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Karen M. Marshall, Jonathan P. Wojciechowski, Vineetha Jayawarna, Abshar Hasan, Cécile Echalier, Sebastien J. P. Callens, Tao Yang, Janos M. Kanczler, Jonathan I. Dawson, Alvaro Mata, Manuel Salmeron-Sanchez, Molly M. Stevens, Richard O. C. Oreffo
{"title":"Bioactive Coatings on 3D Printed Polycaprolactone Scaffolds for Bone Regeneration: A Novel Murine Femur Defect Model for Examination of the Biomaterial Capacity for Repair","authors":"Karen M. Marshall,&nbsp;Jonathan P. Wojciechowski,&nbsp;Vineetha Jayawarna,&nbsp;Abshar Hasan,&nbsp;Cécile Echalier,&nbsp;Sebastien J. P. Callens,&nbsp;Tao Yang,&nbsp;Janos M. Kanczler,&nbsp;Jonathan I. Dawson,&nbsp;Alvaro Mata,&nbsp;Manuel Salmeron-Sanchez,&nbsp;Molly M. Stevens,&nbsp;Richard O. C. Oreffo","doi":"10.1002/admi.202400389","DOIUrl":null,"url":null,"abstract":"<p>Bone tissue engineering seeks to develop treatment approaches for nonhealing and large bone defects. An ideal biodegradable scaffold will induce and support bone formation. The current study examines bone augmentation in critical-sized bone defects, using functionalized scaffolds, with the hypothesized potential to induce skeletal cell differentiation. 3D printed, porous poly(caprolactone) trimethacrylate (PCL-TMA900) scaffolds are applied within a murine femur defect, stabilized by a polyimide intramedullary (IM) pin. The PCL-TMA900 scaffolds are coated with i) elastin-like polypeptide (ELP), ii) poly(ethyl acrylate) (PEA)/fibronectin (FN)/bone morphogenetic protein-2 (PEA/FN/BMP-2), iii) both ELP and PEA/FN/BMP-2, or iv) Laponite nanoclay binding BMP-2. Sequential microcomputed tomography (µCT) and histological analysis are performed. PCL-TMA900 is robust and biocompatible and when coated with the nanoclay material Laponite and BMP-2 induce consistent, significant bone formation compared to the uncoated PCL-TMA900 scaffold. Critically, the BMP-2 is retained, due to the Laponite, producing bone around the scaffold in the desired shape and volume, compared to bone formation observed with the positive control (collagen sponge/BMP-2). The ELP and/or PEA/FN/BMP-2 scaffolds do not demonstrate significant or consistent bone formation. In summary, Laponite/BMP-2 coated PCL-TMA900 scaffolds offer a biodegradable, osteogenic construct for bone augmentation with potential for development into a large scale polymer scaffold for clinical translation.</p>","PeriodicalId":115,"journal":{"name":"Advanced Materials Interfaces","volume":"12 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202400389","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Interfaces","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/admi.202400389","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Bone tissue engineering seeks to develop treatment approaches for nonhealing and large bone defects. An ideal biodegradable scaffold will induce and support bone formation. The current study examines bone augmentation in critical-sized bone defects, using functionalized scaffolds, with the hypothesized potential to induce skeletal cell differentiation. 3D printed, porous poly(caprolactone) trimethacrylate (PCL-TMA900) scaffolds are applied within a murine femur defect, stabilized by a polyimide intramedullary (IM) pin. The PCL-TMA900 scaffolds are coated with i) elastin-like polypeptide (ELP), ii) poly(ethyl acrylate) (PEA)/fibronectin (FN)/bone morphogenetic protein-2 (PEA/FN/BMP-2), iii) both ELP and PEA/FN/BMP-2, or iv) Laponite nanoclay binding BMP-2. Sequential microcomputed tomography (µCT) and histological analysis are performed. PCL-TMA900 is robust and biocompatible and when coated with the nanoclay material Laponite and BMP-2 induce consistent, significant bone formation compared to the uncoated PCL-TMA900 scaffold. Critically, the BMP-2 is retained, due to the Laponite, producing bone around the scaffold in the desired shape and volume, compared to bone formation observed with the positive control (collagen sponge/BMP-2). The ELP and/or PEA/FN/BMP-2 scaffolds do not demonstrate significant or consistent bone formation. In summary, Laponite/BMP-2 coated PCL-TMA900 scaffolds offer a biodegradable, osteogenic construct for bone augmentation with potential for development into a large scale polymer scaffold for clinical translation.

Abstract Image

3D打印聚己内酯支架的生物活性涂层用于骨再生:一种用于检测生物材料修复能力的新型小鼠股骨缺损模型
骨组织工程旨在开发治疗不愈合和大骨缺损的方法。理想的可生物降解支架将诱导和支持骨的形成。目前的研究使用功能化支架研究了临界尺寸骨缺损的骨增强,并假设其具有诱导骨细胞分化的潜力。3D打印多孔聚(己内酯)三甲基丙烯酸酯(PCL-TMA900)支架应用于小鼠股骨缺损,由聚酰亚胺髓内(IM)针稳定。PCL-TMA900支架包被1)弹性蛋白样多肽(ELP), 2)聚丙烯酸乙酯(PEA)/纤维连接蛋白(FN)/骨形态发生蛋白-2 (PEA/FN/BMP-2), 3) ELP和PEA/FN/BMP-2,或4)拉脱石纳米粘土结合BMP-2。进行顺序微计算机断层扫描(µCT)和组织学分析。PCL-TMA900坚固且具有生物相容性,与未涂覆的PCL-TMA900支架相比,涂覆纳米粘土材料拉脱石和BMP-2可诱导一致且显著的骨形成。关键的是,与阳性对照(胶原海绵/BMP-2)观察到的骨形成相比,Laponite保留了BMP-2,在支架周围产生了所需形状和体积的骨。ELP和/或PEA/FN/BMP-2支架没有明显或一致的骨形成。总之,Laponite/BMP-2涂层PCL-TMA900支架为骨增强提供了一种可生物降解的成骨结构,具有发展成为大规模临床转化聚合物支架的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials Interfaces
Advanced Materials Interfaces CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
8.40
自引率
5.60%
发文量
1174
审稿时长
1.3 months
期刊介绍: Advanced Materials Interfaces publishes top-level research on interface technologies and effects. Considering any interface formed between solids, liquids, and gases, the journal ensures an interdisciplinary blend of physics, chemistry, materials science, and life sciences. Advanced Materials Interfaces was launched in 2014 and received an Impact Factor of 4.834 in 2018. The scope of Advanced Materials Interfaces is dedicated to interfaces and surfaces that play an essential role in virtually all materials and devices. Physics, chemistry, materials science and life sciences blend to encourage new, cross-pollinating ideas, which will drive forward our understanding of the processes at the interface. Advanced Materials Interfaces covers all topics in interface-related research: Oil / water separation, Applications of nanostructured materials, 2D materials and heterostructures, Surfaces and interfaces in organic electronic devices, Catalysis and membranes, Self-assembly and nanopatterned surfaces, Composite and coating materials, Biointerfaces for technical and medical applications. Advanced Materials Interfaces provides a forum for topics on surface and interface science with a wide choice of formats: Reviews, Full Papers, and Communications, as well as Progress Reports and Research News.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信