{"title":"Dual Metal Sites Coengineered Graphitic Carbon Nitride as Green Electrocatalyst for Highly Selective Overall Water Splitting—A Sustainable Approach","authors":"Satya Lakshmi Pasarakonda, Srikanth Ponnada, Maryam Sadat Kiai, Velu Duraisamy, Hima Bindu G, Annapurna Nowduri, Sakkarapalayam Murugesan Senthil Kumar, Rakesh K Sharma","doi":"10.1002/ente.202401577","DOIUrl":null,"url":null,"abstract":"<p>The development of efficient, low-cost, non-noble metal-oxide-based nanohybrid materials for overall water splitting is a critical strategy for enhancing clean energy use and addressing environmental issues. In this study, an interfacial engineering strategy for the development of bimetallic Co–Ni nanoparticles on graphitic carbon nitride (g-C<sub>3</sub>N<sub>4</sub>) using ultrasonication followed by coprecipitation is conveyed. These nanoparticles demonstrate high efficacy as bifunctional electrocatalysts for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in alkaline conditions. Co–Ni nanoparticles on graphitic carbon nitride demonstrate an increased surface area via ultrasonication and subsequent coprecipitation. The g-C<sub>3</sub>N<sub>4</sub> combined with Co–Ni nanoparticles leads to the development of bifunctional catalysts that exhibit significant efficiency in both HER and OER, and their interfacial properties are investigated for the first time. The chemical composition and morphology of g-C<sub>3</sub>N<sub>4</sub> integrated with Co–Ni nanoparticles significantly influence the modulation of redox-active sites and the facilitation of electron transfer, resulting in improved splitting efficiency. The interactions between the Co–Ni bimetal and g-C<sub>3</sub>N<sub>4</sub> demonstrate exceptional electrochemical performance for water splitting. Consequently, the 20% 20–Co–Ni–graphitic carbon nitride electrode demonstrated superior HER performance, comparable to the other electrodes. In the results, it is indicated that an increased molar ratio of Co and Ni incorporated in graphitic carbon nitride significantly improves HER performance.</p>","PeriodicalId":11573,"journal":{"name":"Energy technology","volume":"13 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy technology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ente.202401577","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
The development of efficient, low-cost, non-noble metal-oxide-based nanohybrid materials for overall water splitting is a critical strategy for enhancing clean energy use and addressing environmental issues. In this study, an interfacial engineering strategy for the development of bimetallic Co–Ni nanoparticles on graphitic carbon nitride (g-C3N4) using ultrasonication followed by coprecipitation is conveyed. These nanoparticles demonstrate high efficacy as bifunctional electrocatalysts for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in alkaline conditions. Co–Ni nanoparticles on graphitic carbon nitride demonstrate an increased surface area via ultrasonication and subsequent coprecipitation. The g-C3N4 combined with Co–Ni nanoparticles leads to the development of bifunctional catalysts that exhibit significant efficiency in both HER and OER, and their interfacial properties are investigated for the first time. The chemical composition and morphology of g-C3N4 integrated with Co–Ni nanoparticles significantly influence the modulation of redox-active sites and the facilitation of electron transfer, resulting in improved splitting efficiency. The interactions between the Co–Ni bimetal and g-C3N4 demonstrate exceptional electrochemical performance for water splitting. Consequently, the 20% 20–Co–Ni–graphitic carbon nitride electrode demonstrated superior HER performance, comparable to the other electrodes. In the results, it is indicated that an increased molar ratio of Co and Ni incorporated in graphitic carbon nitride significantly improves HER performance.
期刊介绍:
Energy Technology provides a forum for researchers and engineers from all relevant disciplines concerned with the generation, conversion, storage, and distribution of energy.
This new journal shall publish articles covering all technical aspects of energy process engineering from different perspectives, e.g.,
new concepts of energy generation and conversion;
design, operation, control, and optimization of processes for energy generation (e.g., carbon capture) and conversion of energy carriers;
improvement of existing processes;
combination of single components to systems for energy generation;
design of systems for energy storage;
production processes of fuels, e.g., hydrogen, electricity, petroleum, biobased fuels;
concepts and design of devices for energy distribution.