Fractal Performance Under Magnetization Procedures of Fractional Memristive Wilson Neuron Dynamical Model

IF 1.6 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Kashif Ali Abro, Ibrahim Mahariq
{"title":"Fractal Performance Under Magnetization Procedures of Fractional Memristive Wilson Neuron Dynamical Model","authors":"Kashif Ali Abro,&nbsp;Ibrahim Mahariq","doi":"10.1002/jnm.70016","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The non-integer neuron dynamical models are feasible for accurate prediction and perfect estimation of magnetization and de-magnetization in complicated physiological environments within reliable fractal-fractional neuronal modeling. The memristive Wilson neuron model is proposed under the comparative performance of two types of fractal-fractional differentials with two different types of kernels based on two different memories. The non-classical memristive Wilson neuron model with and without magnetization is simulated for numerical schemes by means of linear multi-step integration method. The numerical simulations are traced out by discretizing continuum processes of spatial and time domains for the sake of perfect approximations under singular and non-singular kernel versus local and non-local kernel. By applying the powerful methodology of fractal-fractional differential and integral operators on the memristive Wilson neuron model, the antimonotonicity phenomenon and asymmetric coexisting electrical activities have been explored intensively to widen the neuron-based engineering applications. Remarkably, our results based on magnetization and de-magnetization procedures of Wilson neuron model have imitated the neuron activities under electrophysiological environment.</p>\n </div>","PeriodicalId":50300,"journal":{"name":"International Journal of Numerical Modelling-Electronic Networks Devices and Fields","volume":"38 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Numerical Modelling-Electronic Networks Devices and Fields","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jnm.70016","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The non-integer neuron dynamical models are feasible for accurate prediction and perfect estimation of magnetization and de-magnetization in complicated physiological environments within reliable fractal-fractional neuronal modeling. The memristive Wilson neuron model is proposed under the comparative performance of two types of fractal-fractional differentials with two different types of kernels based on two different memories. The non-classical memristive Wilson neuron model with and without magnetization is simulated for numerical schemes by means of linear multi-step integration method. The numerical simulations are traced out by discretizing continuum processes of spatial and time domains for the sake of perfect approximations under singular and non-singular kernel versus local and non-local kernel. By applying the powerful methodology of fractal-fractional differential and integral operators on the memristive Wilson neuron model, the antimonotonicity phenomenon and asymmetric coexisting electrical activities have been explored intensively to widen the neuron-based engineering applications. Remarkably, our results based on magnetization and de-magnetization procedures of Wilson neuron model have imitated the neuron activities under electrophysiological environment.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.60
自引率
6.20%
发文量
101
审稿时长
>12 weeks
期刊介绍: Prediction through modelling forms the basis of engineering design. The computational power at the fingertips of the professional engineer is increasing enormously and techniques for computer simulation are changing rapidly. Engineers need models which relate to their design area and which are adaptable to new design concepts. They also need efficient and friendly ways of presenting, viewing and transmitting the data associated with their models. The International Journal of Numerical Modelling: Electronic Networks, Devices and Fields provides a communication vehicle for numerical modelling methods and data preparation methods associated with electrical and electronic circuits and fields. It concentrates on numerical modelling rather than abstract numerical mathematics. Contributions on numerical modelling will cover the entire subject of electrical and electronic engineering. They will range from electrical distribution networks to integrated circuits on VLSI design, and from static electric and magnetic fields through microwaves to optical design. They will also include the use of electrical networks as a modelling medium.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信