Optimized Gross Primary Productivity Over the Croplands Within the BEPS Particle Filtering Data Assimilation System (BEPS_PF v1.0)

IF 4.4 2区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES
Xiuli Xing, Mousong Wu, Huajie Zhu, Wenzhuo Duan, Weimin Ju, Xiaorong Wang, Youhua Ran, Yongguang Zhang, Fei Jiang
{"title":"Optimized Gross Primary Productivity Over the Croplands Within the BEPS Particle Filtering Data Assimilation System (BEPS_PF v1.0)","authors":"Xiuli Xing,&nbsp;Mousong Wu,&nbsp;Huajie Zhu,&nbsp;Wenzhuo Duan,&nbsp;Weimin Ju,&nbsp;Xiaorong Wang,&nbsp;Youhua Ran,&nbsp;Yongguang Zhang,&nbsp;Fei Jiang","doi":"10.1029/2024MS004412","DOIUrl":null,"url":null,"abstract":"<p>Agricultural ecosystems play an important role in modulating the global carbon balance by taking up atmospheric carbon dioxide, while large differences and uncertainties exist in the estimated crop gross primary productivity (GPP) by terrestrial ecosystem models (TEMs). With the aim of reducing the parameter uncertainty in TEMs for crop GPP simulation, we developed a particle filtering data assimilation (DA) system based on the ecosystem model BEPS (Biosphere Exchange Process Simulator), that is, the BEPS_PF (v1.0). We investigated the feasibility of BEPS_PF on the multiple parameters optimization across typical crops (wheat, rice, soybean and corn) and on reducing the uncertainty of GPP over 32 cropland eddy covariance sites globally. With BEPS_PF DA, the average R<sup>2</sup> between GPP and observed data at the hourly scale has been efficiently improved by 0.36 and root mean square error reduced by 0.18 gC m<sup>−2</sup> hr<sup>−1</sup>. The DA system has successfully corrected the GPP from the irrigated croplands which was severely underestimated by the model's prior parameters. We found that the maximum carboxylation rate at 25°C (<i>V</i><sub>cmax25</sub>) as well as the leaf nitrogen content (<i>N</i><sub>leaf</sub>) were co-varied with strong seasonal variations. The optimized <i>V</i><sub>cmax25</sub> showed large differences among different crop types with ranges 27.07–62.95, 42.17–93.32, 31.89–105.81, and 38.34–89.29 μmol m<sup>−2</sup> s<sup>−1</sup> for corn, soybean, wheat, and rice respectively. We demonstrated that the BEPS_PF is an efficient tool for optimizing different processes in the ecosystems, and with the satellite data it can be extended to regional and global scales for more accurate estimation of carbon fluxes.</p>","PeriodicalId":14881,"journal":{"name":"Journal of Advances in Modeling Earth Systems","volume":"17 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024MS004412","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advances in Modeling Earth Systems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024MS004412","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Agricultural ecosystems play an important role in modulating the global carbon balance by taking up atmospheric carbon dioxide, while large differences and uncertainties exist in the estimated crop gross primary productivity (GPP) by terrestrial ecosystem models (TEMs). With the aim of reducing the parameter uncertainty in TEMs for crop GPP simulation, we developed a particle filtering data assimilation (DA) system based on the ecosystem model BEPS (Biosphere Exchange Process Simulator), that is, the BEPS_PF (v1.0). We investigated the feasibility of BEPS_PF on the multiple parameters optimization across typical crops (wheat, rice, soybean and corn) and on reducing the uncertainty of GPP over 32 cropland eddy covariance sites globally. With BEPS_PF DA, the average R2 between GPP and observed data at the hourly scale has been efficiently improved by 0.36 and root mean square error reduced by 0.18 gC m−2 hr−1. The DA system has successfully corrected the GPP from the irrigated croplands which was severely underestimated by the model's prior parameters. We found that the maximum carboxylation rate at 25°C (Vcmax25) as well as the leaf nitrogen content (Nleaf) were co-varied with strong seasonal variations. The optimized Vcmax25 showed large differences among different crop types with ranges 27.07–62.95, 42.17–93.32, 31.89–105.81, and 38.34–89.29 μmol m−2 s−1 for corn, soybean, wheat, and rice respectively. We demonstrated that the BEPS_PF is an efficient tool for optimizing different processes in the ecosystems, and with the satellite data it can be extended to regional and global scales for more accurate estimation of carbon fluxes.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Advances in Modeling Earth Systems
Journal of Advances in Modeling Earth Systems METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
11.40
自引率
11.80%
发文量
241
审稿时长
>12 weeks
期刊介绍: The Journal of Advances in Modeling Earth Systems (JAMES) is committed to advancing the science of Earth systems modeling by offering high-quality scientific research through online availability and open access licensing. JAMES invites authors and readers from the international Earth systems modeling community. Open access. Articles are available free of charge for everyone with Internet access to view and download. Formal peer review. Supplemental material, such as code samples, images, and visualizations, is published at no additional charge. No additional charge for color figures. Modest page charges to cover production costs. Articles published in high-quality full text PDF, HTML, and XML. Internal and external reference linking, DOI registration, and forward linking via CrossRef.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信