Numerical and analytical investigations of the water immersion cooling strategy for a permanent magnet synchronous motor

IF 1.5 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Tohid Sharifi
{"title":"Numerical and analytical investigations of the water immersion cooling strategy for a permanent magnet synchronous motor","authors":"Tohid Sharifi","doi":"10.1049/elp2.12546","DOIUrl":null,"url":null,"abstract":"<p>Permanent magnet synchronous motors (PMSMs) experience considerable performance degradation due to the rise in temperature and the resulting partial demagnetisation in the PMs, as well as the shortenings in the insulations' lifetime. To mitigate the temperature of motor components, it is crucial to investigate and continually improve the design of efficient cooling systems. This study implements the water immersion cooling (WIC) concept on a surface-mounted PMSM (SMPMSM), where through comparing its cooling performance with the forced ventilation cooling (FVC), it is indicated that, even at high inlet velocities for the latter, it cannot maintain the temperature below the specified thresholds and the required input electric power to run the ventilation fan will be increased exponentially to compensate for its ineffectiveness. While in the WIC configuration, the winding and PM temperature values remain well below the margins when the heat transfer coefficient of this method is 40<span></span><math>\n <semantics>\n <mrow>\n <mi>%</mi>\n </mrow>\n <annotation> $\\%$</annotation>\n </semantics></math> higher than the FVC. By incorporating the effect of the cooling process through the heat transfer coefficient, the lumped-parameter thermal network (LPTN) is utilised to study the operation mode of the motor under the mentioned cooling configurations. Besides achieving higher cooling efficiency, the WIC strategy can quickly reduce temperature, which is reflected in the thermal time constant of the cooling method extracted from the LPTN. Consequently, it is demonstrated that up to 35<span></span><math>\n <semantics>\n <mrow>\n <mi>%</mi>\n </mrow>\n <annotation> $\\%$</annotation>\n </semantics></math> higher than the nominal generated heat, the SMPMSM under the WIC can operate continuously, while for the FVC, the frequent start-stop driving scenario should be employed.</p>","PeriodicalId":13352,"journal":{"name":"Iet Electric Power Applications","volume":"19 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/elp2.12546","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Electric Power Applications","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/elp2.12546","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Permanent magnet synchronous motors (PMSMs) experience considerable performance degradation due to the rise in temperature and the resulting partial demagnetisation in the PMs, as well as the shortenings in the insulations' lifetime. To mitigate the temperature of motor components, it is crucial to investigate and continually improve the design of efficient cooling systems. This study implements the water immersion cooling (WIC) concept on a surface-mounted PMSM (SMPMSM), where through comparing its cooling performance with the forced ventilation cooling (FVC), it is indicated that, even at high inlet velocities for the latter, it cannot maintain the temperature below the specified thresholds and the required input electric power to run the ventilation fan will be increased exponentially to compensate for its ineffectiveness. While in the WIC configuration, the winding and PM temperature values remain well below the margins when the heat transfer coefficient of this method is 40 % $\%$ higher than the FVC. By incorporating the effect of the cooling process through the heat transfer coefficient, the lumped-parameter thermal network (LPTN) is utilised to study the operation mode of the motor under the mentioned cooling configurations. Besides achieving higher cooling efficiency, the WIC strategy can quickly reduce temperature, which is reflected in the thermal time constant of the cooling method extracted from the LPTN. Consequently, it is demonstrated that up to 35 % $\%$ higher than the nominal generated heat, the SMPMSM under the WIC can operate continuously, while for the FVC, the frequent start-stop driving scenario should be employed.

Abstract Image

永磁同步电机浸水冷却策略的数值与分析研究
由于温度升高,永磁同步电机(pmms)的部分退磁,以及绝缘体寿命缩短,导致其性能显著下降。为了降低电机部件的温度,研究和不断改进高效冷却系统的设计是至关重要的。本研究将水浸式冷却(WIC)概念应用于表面安装式永磁同步电机(SMPMSM),通过与强制通风冷却(FVC)的冷却性能比较,发现SMPMSM即使在较高的进口速度下,也无法将温度保持在指定的阈值以下,并且运行通风机所需的输入功率将呈指数级增加,以补偿其无效。而在WIC配置中,当该方法的传热系数比FVC高40%时,绕组和PM的温度值仍远低于边界。利用集总参数热网络(LPTN),通过传热系数将冷却过程的影响纳入研究,研究了上述冷却配置下电机的运行方式。WIC策略除了可以获得更高的冷却效率外,还可以快速降低温度,这体现在从LPTN中提取的冷却方法的热时间常数上。结果表明,在WIC下,SMPMSM可以连续运行,而对于FVC,则应采用频繁启停驱动方案,高于标称产生热量35%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Iet Electric Power Applications
Iet Electric Power Applications 工程技术-工程:电子与电气
CiteScore
4.80
自引率
5.90%
发文量
104
审稿时长
3 months
期刊介绍: IET Electric Power Applications publishes papers of a high technical standard with a suitable balance of practice and theory. The scope covers a wide range of applications and apparatus in the power field. In addition to papers focussing on the design and development of electrical equipment, papers relying on analysis are also sought, provided that the arguments are conveyed succinctly and the conclusions are clear. The scope of the journal includes the following: The design and analysis of motors and generators of all sizes Rotating electrical machines Linear machines Actuators Power transformers Railway traction machines and drives Variable speed drives Machines and drives for electrically powered vehicles Industrial and non-industrial applications and processes Current Special Issue. Call for papers: Progress in Electric Machines, Power Converters and their Control for Wave Energy Generation - https://digital-library.theiet.org/files/IET_EPA_CFP_PEMPCCWEG.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信