{"title":"Progress and prospect of flexible MXene-based energy storage","authors":"Hongxin Yuan, Jianxin Hua, Wei Wei, Miao Zhang, Yue Hao, Jingjing Chang","doi":"10.1002/cey2.639","DOIUrl":null,"url":null,"abstract":"<p>The growing need for flexible and wearable electronics, such as smartwatches and foldable displays, highlights the shortcomings of traditional energy storage methods. In response, scientists are developing compact, flexible, and foldable energy devices to overcome these challenges. MXenes—a family of two-dimensional nanomaterials—are a promising solution because of their unique properties, including a large surface area, excellent electrical conductivity, numerous functional groups, and distinctive layered structures. These attributes make MXenes attractive options for flexible energy storage. This paper reviews recent advances in using flexible MXene-based materials for flexible Li−S batteries, metal-ion batteries (Zn and Na), and supercapacitors. The development of MXene-based composites is explored, with a detailed electrochemical performance analysis of various flexible devices. The review addresses significant challenges and outlines strategic objectives for advancing robust and flexible MXene-based energy storage devices.</p>","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":"7 1","pages":""},"PeriodicalIF":19.5000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cey2.639","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Energy","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cey2.639","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The growing need for flexible and wearable electronics, such as smartwatches and foldable displays, highlights the shortcomings of traditional energy storage methods. In response, scientists are developing compact, flexible, and foldable energy devices to overcome these challenges. MXenes—a family of two-dimensional nanomaterials—are a promising solution because of their unique properties, including a large surface area, excellent electrical conductivity, numerous functional groups, and distinctive layered structures. These attributes make MXenes attractive options for flexible energy storage. This paper reviews recent advances in using flexible MXene-based materials for flexible Li−S batteries, metal-ion batteries (Zn and Na), and supercapacitors. The development of MXene-based composites is explored, with a detailed electrochemical performance analysis of various flexible devices. The review addresses significant challenges and outlines strategic objectives for advancing robust and flexible MXene-based energy storage devices.
期刊介绍:
Carbon Energy is an international journal that focuses on cutting-edge energy technology involving carbon utilization and carbon emission control. It provides a platform for researchers to communicate their findings and critical opinions and aims to bring together the communities of advanced material and energy. The journal covers a broad range of energy technologies, including energy storage, photocatalysis, electrocatalysis, photoelectrocatalysis, and thermocatalysis. It covers all forms of energy, from conventional electric and thermal energy to those that catalyze chemical and biological transformations. Additionally, Carbon Energy promotes new technologies for controlling carbon emissions and the green production of carbon materials. The journal welcomes innovative interdisciplinary research with wide impact. It is indexed in various databases, including Advanced Technologies & Aerospace Collection/Database, Biological Science Collection/Database, CAS, DOAJ, Environmental Science Collection/Database, Web of Science and Technology Collection.