Progress and prospect of flexible MXene-based energy storage

IF 19.5 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Carbon Energy Pub Date : 2024-10-21 DOI:10.1002/cey2.639
Hongxin Yuan, Jianxin Hua, Wei Wei, Miao Zhang, Yue Hao, Jingjing Chang
{"title":"Progress and prospect of flexible MXene-based energy storage","authors":"Hongxin Yuan,&nbsp;Jianxin Hua,&nbsp;Wei Wei,&nbsp;Miao Zhang,&nbsp;Yue Hao,&nbsp;Jingjing Chang","doi":"10.1002/cey2.639","DOIUrl":null,"url":null,"abstract":"<p>The growing need for flexible and wearable electronics, such as smartwatches and foldable displays, highlights the shortcomings of traditional energy storage methods. In response, scientists are developing compact, flexible, and foldable energy devices to overcome these challenges. MXenes—a family of two-dimensional nanomaterials—are a promising solution because of their unique properties, including a large surface area, excellent electrical conductivity, numerous functional groups, and distinctive layered structures. These attributes make MXenes attractive options for flexible energy storage. This paper reviews recent advances in using flexible MXene-based materials for flexible Li−S batteries, metal-ion batteries (Zn and Na), and supercapacitors. The development of MXene-based composites is explored, with a detailed electrochemical performance analysis of various flexible devices. The review addresses significant challenges and outlines strategic objectives for advancing robust and flexible MXene-based energy storage devices.</p>","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":"7 1","pages":""},"PeriodicalIF":19.5000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cey2.639","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Energy","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cey2.639","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The growing need for flexible and wearable electronics, such as smartwatches and foldable displays, highlights the shortcomings of traditional energy storage methods. In response, scientists are developing compact, flexible, and foldable energy devices to overcome these challenges. MXenes—a family of two-dimensional nanomaterials—are a promising solution because of their unique properties, including a large surface area, excellent electrical conductivity, numerous functional groups, and distinctive layered structures. These attributes make MXenes attractive options for flexible energy storage. This paper reviews recent advances in using flexible MXene-based materials for flexible Li−S batteries, metal-ion batteries (Zn and Na), and supercapacitors. The development of MXene-based composites is explored, with a detailed electrochemical performance analysis of various flexible devices. The review addresses significant challenges and outlines strategic objectives for advancing robust and flexible MXene-based energy storage devices.

Abstract Image

基于柔性mxene储能技术的研究进展与展望
对智能手表和可折叠显示器等柔性和可穿戴电子产品日益增长的需求凸显了传统储能方法的缺点。作为回应,科学家们正在开发紧凑、灵活和可折叠的能源设备来克服这些挑战。mxenes是一种二维纳米材料,由于其独特的性能,包括大的表面积、优异的导电性、众多的官能团和独特的分层结构,是一种很有前途的解决方案。这些属性使MXenes成为灵活储能的有吸引力的选择。本文综述了在柔性锂离子电池、金属离子电池(锌和钠)和超级电容器中使用柔性mxene基材料的最新进展。探讨了mxene基复合材料的发展,详细分析了各种柔性器件的电化学性能。该报告提出了重大挑战,并概述了推进稳健、灵活的基于mxene的储能设备的战略目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Carbon Energy
Carbon Energy Multiple-
CiteScore
25.70
自引率
10.70%
发文量
116
审稿时长
4 weeks
期刊介绍: Carbon Energy is an international journal that focuses on cutting-edge energy technology involving carbon utilization and carbon emission control. It provides a platform for researchers to communicate their findings and critical opinions and aims to bring together the communities of advanced material and energy. The journal covers a broad range of energy technologies, including energy storage, photocatalysis, electrocatalysis, photoelectrocatalysis, and thermocatalysis. It covers all forms of energy, from conventional electric and thermal energy to those that catalyze chemical and biological transformations. Additionally, Carbon Energy promotes new technologies for controlling carbon emissions and the green production of carbon materials. The journal welcomes innovative interdisciplinary research with wide impact. It is indexed in various databases, including Advanced Technologies & Aerospace Collection/Database, Biological Science Collection/Database, CAS, DOAJ, Environmental Science Collection/Database, Web of Science and Technology Collection.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信