{"title":"Infrared PbS Quantum Dot–Lead Halide Perovskite Combinations for Breaking the Shockley–Queisser Limit","authors":"Yuhong Jiang, Yong Zhang, Jianghui Zheng, Yijun Gao, Chaoyu Xiang, Beining Dong, Chun-Ho Lin, Fandi Chen, Xinwei Guan, Xiaoning Li, Tao Wan, Tingting Mei, Shujuan Huang, Long Hu, Dewei Chu","doi":"10.1002/solr.202400743","DOIUrl":null,"url":null,"abstract":"<p>Lead sulfide (PbS) quantum dots (QDs) and lead halide perovskites (LHPs) have emerged as highly promising materials for high-efficiency photovoltaics. PbS QDs offer size-dependent bandgaps in the infrared region and the potential for multiple exciton generation, while LHPs feature tunable bandgaps, high absorption coefficients, and long carrier diffusion lengths in the visible spectrum. This review focuses on two primary approaches to breaking the Shockley–Queisser (S–Q) limit based on the combinations of these two semiconducting materials: 1) monolithic 2-terminal tandem photovoltaics with complementary spectral absorption; and 2) intermediate-band solar cells (IBSCs) leveraging PbS QDs within a LHP matrix. Due to the ideally complementary spectrum of PbS and LHPs, emphasis is placed on the prevailing strategies for enhancing efficiency, addressing the major challenges in rational materials designs and device optimizations. Then, key obstacles including surface passivation, solvent compatibility, and the limited performance of small-bandgap PbS QD solar cells are analyzed, along with various potential solutions for tandem cells. For IBSCs, the evolution of materials and device architecture and the unique advantages of their combination are outlined in detail. Finally, this review provides a comprehensive outlook on future research directions to develop efficient tandem and IBSC devices for breaking the S–Q limit.</p>","PeriodicalId":230,"journal":{"name":"Solar RRL","volume":"9 1","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar RRL","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/solr.202400743","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Lead sulfide (PbS) quantum dots (QDs) and lead halide perovskites (LHPs) have emerged as highly promising materials for high-efficiency photovoltaics. PbS QDs offer size-dependent bandgaps in the infrared region and the potential for multiple exciton generation, while LHPs feature tunable bandgaps, high absorption coefficients, and long carrier diffusion lengths in the visible spectrum. This review focuses on two primary approaches to breaking the Shockley–Queisser (S–Q) limit based on the combinations of these two semiconducting materials: 1) monolithic 2-terminal tandem photovoltaics with complementary spectral absorption; and 2) intermediate-band solar cells (IBSCs) leveraging PbS QDs within a LHP matrix. Due to the ideally complementary spectrum of PbS and LHPs, emphasis is placed on the prevailing strategies for enhancing efficiency, addressing the major challenges in rational materials designs and device optimizations. Then, key obstacles including surface passivation, solvent compatibility, and the limited performance of small-bandgap PbS QD solar cells are analyzed, along with various potential solutions for tandem cells. For IBSCs, the evolution of materials and device architecture and the unique advantages of their combination are outlined in detail. Finally, this review provides a comprehensive outlook on future research directions to develop efficient tandem and IBSC devices for breaking the S–Q limit.
Solar RRLPhysics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
12.10
自引率
6.30%
发文量
460
期刊介绍:
Solar RRL, formerly known as Rapid Research Letters, has evolved to embrace a broader and more encompassing format. We publish Research Articles and Reviews covering all facets of solar energy conversion. This includes, but is not limited to, photovoltaics and solar cells (both established and emerging systems), as well as the development, characterization, and optimization of materials and devices. Additionally, we cover topics such as photovoltaic modules and systems, their installation and deployment, photocatalysis, solar fuels, photothermal and photoelectrochemical solar energy conversion, energy distribution, grid issues, and other relevant aspects. Join us in exploring the latest advancements in solar energy conversion research.