Fault diagnosis of high-voltage circuit breaker based on open-set theory fusion model

IF 1.5 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Jinglong Zhou, Hongshan Zhao, Shiyu Lin, Haoming Si, Bohan Li
{"title":"Fault diagnosis of high-voltage circuit breaker based on open-set theory fusion model","authors":"Jinglong Zhou,&nbsp;Hongshan Zhao,&nbsp;Shiyu Lin,&nbsp;Haoming Si,&nbsp;Bohan Li","doi":"10.1049/elp2.12539","DOIUrl":null,"url":null,"abstract":"<p>Fault diagnosis of high voltage circuit breaker is an important aspect of electrical equipment intelligence. To effectively identify unknown faults, this paper proposes a high-voltage circuit breaker fault diagnosis method based on open set fusion model (OSFM). Firstly, the current data and vibration data are processed using sequential variational mode decomposition and Fourier transform, respectively, to extract data features, thereby constructing the original feature set of the current-vibration signal, which is then input into the Transformer model for further feature extraction. Secondly, the open-set discriminant model based on the extreme value theory is proposed, and the data output by transformer is input into classifier to realise open-set fault diagnosis. Finally, the tree-structured parzen estimator is used to optimise the selection of transformer model parameters and discriminator acceptance probability. The efficacy of the OSFM was evaluated through experimentation on experimental platform. The results demonstrated that the OSFM method can effectively recognise previously unidentified class faults while maintaining accurate recognition of known classes. Compared with other open-set classification techniques, OSFM can improve the recognition accuracy by up to 38.36%.</p>","PeriodicalId":13352,"journal":{"name":"Iet Electric Power Applications","volume":"19 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/elp2.12539","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Electric Power Applications","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/elp2.12539","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Fault diagnosis of high voltage circuit breaker is an important aspect of electrical equipment intelligence. To effectively identify unknown faults, this paper proposes a high-voltage circuit breaker fault diagnosis method based on open set fusion model (OSFM). Firstly, the current data and vibration data are processed using sequential variational mode decomposition and Fourier transform, respectively, to extract data features, thereby constructing the original feature set of the current-vibration signal, which is then input into the Transformer model for further feature extraction. Secondly, the open-set discriminant model based on the extreme value theory is proposed, and the data output by transformer is input into classifier to realise open-set fault diagnosis. Finally, the tree-structured parzen estimator is used to optimise the selection of transformer model parameters and discriminator acceptance probability. The efficacy of the OSFM was evaluated through experimentation on experimental platform. The results demonstrated that the OSFM method can effectively recognise previously unidentified class faults while maintaining accurate recognition of known classes. Compared with other open-set classification techniques, OSFM can improve the recognition accuracy by up to 38.36%.

Abstract Image

基于开集理论的高压断路器故障诊断
高压断路器故障诊断是电气设备智能化的一个重要方面。为有效识别未知故障,提出了一种基于开放集融合模型(OSFM)的高压断路器故障诊断方法。首先,对电流数据和振动数据分别进行序列变分模态分解和傅里叶变换,提取数据特征,从而构建电流振动信号的原始特征集,然后将其输入Transformer模型进行特征提取。其次,提出了基于极值理论的开集判别模型,并将变压器输出的数据输入到分类器中实现开集故障诊断;最后,利用树状结构parzen估计器对变压器模型参数的选取和鉴别器的接受概率进行优化。通过实验平台上的实验,对OSFM的效果进行了评价。结果表明,该方法在保持对已知类的准确识别的同时,能够有效识别以前未识别的类故障。与其他开集分类技术相比,OSFM的识别准确率提高了38.36%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Iet Electric Power Applications
Iet Electric Power Applications 工程技术-工程:电子与电气
CiteScore
4.80
自引率
5.90%
发文量
104
审稿时长
3 months
期刊介绍: IET Electric Power Applications publishes papers of a high technical standard with a suitable balance of practice and theory. The scope covers a wide range of applications and apparatus in the power field. In addition to papers focussing on the design and development of electrical equipment, papers relying on analysis are also sought, provided that the arguments are conveyed succinctly and the conclusions are clear. The scope of the journal includes the following: The design and analysis of motors and generators of all sizes Rotating electrical machines Linear machines Actuators Power transformers Railway traction machines and drives Variable speed drives Machines and drives for electrically powered vehicles Industrial and non-industrial applications and processes Current Special Issue. Call for papers: Progress in Electric Machines, Power Converters and their Control for Wave Energy Generation - https://digital-library.theiet.org/files/IET_EPA_CFP_PEMPCCWEG.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信