{"title":"Use of stepwise m5 model tree to forecast the P24max based on teleconnection indices","authors":"Golnar Ghanbarzadeh, Khalil Ghorbani, Meysam Salarijazi, Chooghi Bairam Komaki, Laleh Rezaei Ghaleh","doi":"10.1002/asl.1276","DOIUrl":null,"url":null,"abstract":"<p>In this study, the linear and non-linear multivariate relationships between 25 teleconnection indices (tele-indices) as independent variables and annual P24max as the dependent variable were analyzed using multivariate linear regression (MLR) and decision tree regression models (M5), in selected synoptic weather stations of Iran over a statistical period of 30 years (1992–2021). No strong and statistically significant correlation between each tele-index and P24max was observed. Therefore, it is not appropriate to attribute climate changes in the region to a single factor such as El Niño, but rather consider the combined influence of multiple factors. The M5 model demonstrated higher performance, indicating a non-linear relationship between tele-indices and P24max. The stepwise execution of the M5 model tree showed that the algorithm follows a greedy approach, and it is not necessary to use all variables to predict P24max. The normalized root mean square error (NRMSE) of P24max estimation was found to be 15%, 13%, 15%, 8%, 20%, 14%, and 12% with the coefficients of determination of 0.78, 0.79, 0.72, 0.85, 0.81, 0.82, and 0.84 in Hashemabad-Gorgan, Rasht, Kermanshah, Ahvaz, Bandar Abbas, Isfahan, and Birjand, respectively. Finally, it is possible to forecast P24max using tele-indices measured in the previous year.</p>","PeriodicalId":50734,"journal":{"name":"Atmospheric Science Letters","volume":"26 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/asl.1276","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Science Letters","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/asl.1276","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, the linear and non-linear multivariate relationships between 25 teleconnection indices (tele-indices) as independent variables and annual P24max as the dependent variable were analyzed using multivariate linear regression (MLR) and decision tree regression models (M5), in selected synoptic weather stations of Iran over a statistical period of 30 years (1992–2021). No strong and statistically significant correlation between each tele-index and P24max was observed. Therefore, it is not appropriate to attribute climate changes in the region to a single factor such as El Niño, but rather consider the combined influence of multiple factors. The M5 model demonstrated higher performance, indicating a non-linear relationship between tele-indices and P24max. The stepwise execution of the M5 model tree showed that the algorithm follows a greedy approach, and it is not necessary to use all variables to predict P24max. The normalized root mean square error (NRMSE) of P24max estimation was found to be 15%, 13%, 15%, 8%, 20%, 14%, and 12% with the coefficients of determination of 0.78, 0.79, 0.72, 0.85, 0.81, 0.82, and 0.84 in Hashemabad-Gorgan, Rasht, Kermanshah, Ahvaz, Bandar Abbas, Isfahan, and Birjand, respectively. Finally, it is possible to forecast P24max using tele-indices measured in the previous year.
期刊介绍:
Atmospheric Science Letters (ASL) is a wholly Open Access electronic journal. Its aim is to provide a fully peer reviewed publication route for new shorter contributions in the field of atmospheric and closely related sciences. Through its ability to publish shorter contributions more rapidly than conventional journals, ASL offers a framework that promotes new understanding and creates scientific debate - providing a platform for discussing scientific issues and techniques.
We encourage the presentation of multi-disciplinary work and contributions that utilise ideas and techniques from parallel areas. We particularly welcome contributions that maximise the visualisation capabilities offered by a purely on-line journal. ASL welcomes papers in the fields of: Dynamical meteorology; Ocean-atmosphere systems; Climate change, variability and impacts; New or improved observations from instrumentation; Hydrometeorology; Numerical weather prediction; Data assimilation and ensemble forecasting; Physical processes of the atmosphere; Land surface-atmosphere systems.