{"title":"A sustainable approach for xylitol production from pistachio shell using Candida tropicalis","authors":"Filiz Hazal, Hatice Neval Özbek, Murat Yılmaztekin, Fahrettin Göğüş, Derya Koçak Yanık","doi":"10.1002/bbb.2701","DOIUrl":null,"url":null,"abstract":"<p>This study presents a novel approach for producing xylitol from xylose-rich hydrolysate derived from pistachio shells. Initially, xylose-rich hydrolysate was obtained through microwave-assisted high-pressure CO<sub>2</sub>/H<sub>2</sub>O hydrolysis, achieving a maximum xylose concentration of 14.58 ± 0.11 g L<sup>−1</sup> and yield of 62.01 ± 0.92% (w w<sup>−1</sup>). Prior to the bioconversion process, the hydrolysate was detoxified using activated charcoal to remove inhibitory compounds such as hydroxymethylfurfural (HMF) and furfural. Xylitol production from the detoxified hydrolysate was carried out biotechnologically using the yeast <i>Candida tropicalis</i>. A Box–Behnken design was implemented to investigate the effect of temperature, pH, and aeration rate on xylitol yield during bioconversion in bioreactor. The highest xylitol yield of 0.94 g g<sup>−1</sup> was recorded at 72 h under optimized conditions of 34.5 °C, pH 4.5, and 1.2 vvm. Recovery and purification of xylitol from the fermentation medium was achieved using ethanol as an antisolvent. Xylitol was recovered with a yield of 68.4% from culture medium by crystallization. Based on the findings of this study, a sustainable and environmentally friendly process can be proposed for recovering and purifying xylitol from pistachio shell hydrolysate.</p>","PeriodicalId":55380,"journal":{"name":"Biofuels Bioproducts & Biorefining-Biofpr","volume":"19 1","pages":"151-162"},"PeriodicalIF":3.2000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bbb.2701","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofuels Bioproducts & Biorefining-Biofpr","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bbb.2701","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents a novel approach for producing xylitol from xylose-rich hydrolysate derived from pistachio shells. Initially, xylose-rich hydrolysate was obtained through microwave-assisted high-pressure CO2/H2O hydrolysis, achieving a maximum xylose concentration of 14.58 ± 0.11 g L−1 and yield of 62.01 ± 0.92% (w w−1). Prior to the bioconversion process, the hydrolysate was detoxified using activated charcoal to remove inhibitory compounds such as hydroxymethylfurfural (HMF) and furfural. Xylitol production from the detoxified hydrolysate was carried out biotechnologically using the yeast Candida tropicalis. A Box–Behnken design was implemented to investigate the effect of temperature, pH, and aeration rate on xylitol yield during bioconversion in bioreactor. The highest xylitol yield of 0.94 g g−1 was recorded at 72 h under optimized conditions of 34.5 °C, pH 4.5, and 1.2 vvm. Recovery and purification of xylitol from the fermentation medium was achieved using ethanol as an antisolvent. Xylitol was recovered with a yield of 68.4% from culture medium by crystallization. Based on the findings of this study, a sustainable and environmentally friendly process can be proposed for recovering and purifying xylitol from pistachio shell hydrolysate.
期刊介绍:
Biofuels, Bioproducts and Biorefining is a vital source of information on sustainable products, fuels and energy. Examining the spectrum of international scientific research and industrial development along the entire supply chain, The journal publishes a balanced mixture of peer-reviewed critical reviews, commentary, business news highlights, policy updates and patent intelligence. Biofuels, Bioproducts and Biorefining is dedicated to fostering growth in the biorenewables sector and serving its growing interdisciplinary community by providing a unique, systems-based insight into technologies in these fields as well as their industrial development.