Optimizing La₂MnXO₆ Double Perovskite for Superior Electrochemical Efficiency in Supercapacitors

Energy Storage Pub Date : 2025-01-21 DOI:10.1002/est2.70123
Ahmar Ali, Mohammed A. Gondal, Javed A. Khan, Mujahid Mustaqeem, Munerah A. Almessiere, Abdulhadi Baykal
{"title":"Optimizing La₂MnXO₆ Double Perovskite for Superior Electrochemical Efficiency in Supercapacitors","authors":"Ahmar Ali,&nbsp;Mohammed A. Gondal,&nbsp;Javed A. Khan,&nbsp;Mujahid Mustaqeem,&nbsp;Munerah A. Almessiere,&nbsp;Abdulhadi Baykal","doi":"10.1002/est2.70123","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Double perovskite oxides (POs) are effective electrode materials for supercapacitors (SCs). Nevertheless, adapting their unique architectures to boost the electrochemical performance remains tricky. Herein, we present exceptional La<sub>2</sub>MnXO<sub>6</sub> (X = Co, Fe) double perovskites as SC electrode materials. The sol–gel method has prepared La<sub>2</sub>MnCoO<sub>6</sub> (LMCO) and La<sub>2</sub>MnFeO<sub>6</sub> (LMFO) nanorods. XRD revealed that LMCO and LMFO have monoclinic crystal structures with lattice constants of <i>a</i> = 5.517 Å, <i>b</i> = 5.528 Å, <i>c</i> = 7.805 Å, <i>β</i> = 89.926°, and <i>a</i> = 5.549 Å, <i>b</i> = 5.557 Å, <i>c</i> = 7.783 Å, <i>β</i> = 89.931°, respectively. Scanning electron microscopy indicated the existence of uniformly distributed nanorods. The bandgap using Tauc's plot was determined as 1.38 and 1.24 eV for La<sub>2</sub>MnCoO<sub>6</sub> and La<sub>2</sub>MnFeO<sub>6</sub>, respectively. Fourier-transform infrared spectroscopy further characterized the prepared LMCO and LMFO nanorods. X-ray photoelectron spectroscopy investigation confirmed the existence of La<sup>3+</sup>, Mn<sup>3+</sup>, Fe<sup>3+</sup>, O<sup>2−</sup>, and La<sup>3+</sup>, Mn<sup>3+</sup>, Co<sup>3+</sup>, O<sup>2−</sup> ions on the surface of La<sub>2</sub>MnFeO<sub>6</sub> and La<sub>2</sub>MnFeO<sub>6</sub>, respectively. The specific capacitance achieved was 333.86 and 880.5 F/g @ 2.5 A/g for La<sub>2</sub>MnCoO<sub>6</sub> and La<sub>2</sub>MnFeO<sub>6</sub>, respectively, using 1 M KOH electrolyte. La<sub>2</sub>MnFeO<sub>6</sub> demonstrated excellent energy and power density of 30.5 Wh/kg and 625 W/kg. The asymmetric CV curve shape proved that we have battery-type SC behavior due to the indication of redox reactions. Furthermore, Dunn's technique evaluated the percentage contribution of capacitive and diffusion behavior. Our strategy using LMCO and LMFO nanorods material improved specific capacitance activity and significantly offered a facile guideline for targeting double perovskite electrodes for SC applications.</p>\n </div>","PeriodicalId":11765,"journal":{"name":"Energy Storage","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/est2.70123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Double perovskite oxides (POs) are effective electrode materials for supercapacitors (SCs). Nevertheless, adapting their unique architectures to boost the electrochemical performance remains tricky. Herein, we present exceptional La2MnXO6 (X = Co, Fe) double perovskites as SC electrode materials. The sol–gel method has prepared La2MnCoO6 (LMCO) and La2MnFeO6 (LMFO) nanorods. XRD revealed that LMCO and LMFO have monoclinic crystal structures with lattice constants of a = 5.517 Å, b = 5.528 Å, c = 7.805 Å, β = 89.926°, and a = 5.549 Å, b = 5.557 Å, c = 7.783 Å, β = 89.931°, respectively. Scanning electron microscopy indicated the existence of uniformly distributed nanorods. The bandgap using Tauc's plot was determined as 1.38 and 1.24 eV for La2MnCoO6 and La2MnFeO6, respectively. Fourier-transform infrared spectroscopy further characterized the prepared LMCO and LMFO nanorods. X-ray photoelectron spectroscopy investigation confirmed the existence of La3+, Mn3+, Fe3+, O2−, and La3+, Mn3+, Co3+, O2− ions on the surface of La2MnFeO6 and La2MnFeO6, respectively. The specific capacitance achieved was 333.86 and 880.5 F/g @ 2.5 A/g for La2MnCoO6 and La2MnFeO6, respectively, using 1 M KOH electrolyte. La2MnFeO6 demonstrated excellent energy and power density of 30.5 Wh/kg and 625 W/kg. The asymmetric CV curve shape proved that we have battery-type SC behavior due to the indication of redox reactions. Furthermore, Dunn's technique evaluated the percentage contribution of capacitive and diffusion behavior. Our strategy using LMCO and LMFO nanorods material improved specific capacitance activity and significantly offered a facile guideline for targeting double perovskite electrodes for SC applications.

Abstract Image

双过氧化物(PO)是超级电容器(SC)的有效电极材料。然而,如何利用其独特的结构来提高电化学性能仍是一个难题。在此,我们介绍了作为超级电容器电极材料的特殊 La2MnXO6(X = Co、Fe)双过氧化物。溶胶-凝胶法制备了 La2MnCoO6(LMCO)和 La2MnFeO6(LMFO)纳米棒。XRD 显示,LMCO 和 LMFO 具有单斜晶体结构,晶格常数分别为 a = 5.517 Å、b = 5.528 Å、c = 7.805 Å、β = 89.926°,以及 a = 5.549 Å、b = 5.557 Å、c = 7.783 Å、β = 89.931°。扫描电子显微镜显示存在均匀分布的纳米棒。根据陶氏图,La2MnCoO6 和 La2MnFeO6 的带隙分别为 1.38 和 1.24 eV。傅立叶变换红外光谱进一步确定了制备的 LMCO 和 LMFO 纳米棒的特性。X 射线光电子能谱研究证实了 La2MnFeO6 和 La2MnFeO6 表面分别存在 La3+、Mn3+、Fe3+、O2- 和 La3+、Mn3+、Co3+、O2- 离子。使用 1 M KOH 电解液,La2MnCoO6 和 La2MnFeO6 的比电容分别为 333.86 和 880.5 F/g @ 2.5 A/g。La2MnFeO6 的能量和功率密度分别达到 30.5 Wh/kg 和 625 W/kg。不对称的 CV 曲线形状证明,由于存在氧化还原反应,我们的电池具有电池型 SC 行为。此外,邓恩技术还评估了电容和扩散行为的贡献百分比。我们使用 LMCO 和 LMFO 纳米棒材料的策略提高了比电容活性,并为将双包晶石电极用于 SC 应用提供了便捷的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信