Projected Changes in Diurnal Temperature Range Over India Using a Coupled Ocean–Atmosphere Regional Climate Model

IF 3.5 3区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES
C. B. Jayasankar, Vasubandhu Misra
{"title":"Projected Changes in Diurnal Temperature Range Over India Using a Coupled Ocean–Atmosphere Regional Climate Model","authors":"C. B. Jayasankar,&nbsp;Vasubandhu Misra","doi":"10.1002/joc.8696","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This study investigates the projected changes in the diurnal temperature range (DTR) over India and explains its considerable spatial heterogeneity from a 20-km resolution coupled regional climate model (RSM-ROMS) integration. The RSM-ROMS is driven at the lateral boundaries by the Community Climate System Model version 4 (CCSM4) model. Observations reveal spatial heterogeneity in DTR trends with significant declining trends at many grid points interspersed with areas of either increasing or insignificant trends of DTR during each of the four seasons. The present-day simulations from RSM-ROMS show reasonable skill in simulating the daily maximum temperature (Tmax) and minimum temperature (Tmin) over India. Our results show a significant decrease in DTR over the Gangetic Plains in boreal winter and fall seasons and over southeastern India during boreal summer in the projected mid-21st century climate under the RCP 8.5 emission scenario. The future reduction in DTR over Region-1 (over Bihar and the eastern regions of Uttar Pradesh) during December–February (−0.86°C) and over Region-3 (over the rain shadow regions of Peninsular India) during June–September (−0.49°C) is attributed to large changes in surface radiative fluxes, with some of the decrease in downward short wave flux attributed to an increase in high cloud cover at the time of Tmax while there is a considerable increase in downward longwave flux in the mid-21st century climate. The enthalpy fluxes at the time of Tmax also act to reduce the rate of its warming. As a result, the warming rate of Tmax is less compared with the corresponding warming rate of Tmin, which leads to a reduction of the DTR in some regions that display a significant reduction in future climate. In contrast, Region-2 (over Rajasthan) and Region-4 (over northeast India) exhibit insignificant DTR changes in the mid-21st century climate for lack of asymmetrical changes in Tmin and Tmax.</p>\n </div>","PeriodicalId":13779,"journal":{"name":"International Journal of Climatology","volume":"45 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Climatology","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/joc.8696","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the projected changes in the diurnal temperature range (DTR) over India and explains its considerable spatial heterogeneity from a 20-km resolution coupled regional climate model (RSM-ROMS) integration. The RSM-ROMS is driven at the lateral boundaries by the Community Climate System Model version 4 (CCSM4) model. Observations reveal spatial heterogeneity in DTR trends with significant declining trends at many grid points interspersed with areas of either increasing or insignificant trends of DTR during each of the four seasons. The present-day simulations from RSM-ROMS show reasonable skill in simulating the daily maximum temperature (Tmax) and minimum temperature (Tmin) over India. Our results show a significant decrease in DTR over the Gangetic Plains in boreal winter and fall seasons and over southeastern India during boreal summer in the projected mid-21st century climate under the RCP 8.5 emission scenario. The future reduction in DTR over Region-1 (over Bihar and the eastern regions of Uttar Pradesh) during December–February (−0.86°C) and over Region-3 (over the rain shadow regions of Peninsular India) during June–September (−0.49°C) is attributed to large changes in surface radiative fluxes, with some of the decrease in downward short wave flux attributed to an increase in high cloud cover at the time of Tmax while there is a considerable increase in downward longwave flux in the mid-21st century climate. The enthalpy fluxes at the time of Tmax also act to reduce the rate of its warming. As a result, the warming rate of Tmax is less compared with the corresponding warming rate of Tmin, which leads to a reduction of the DTR in some regions that display a significant reduction in future climate. In contrast, Region-2 (over Rajasthan) and Region-4 (over northeast India) exhibit insignificant DTR changes in the mid-21st century climate for lack of asymmetrical changes in Tmin and Tmax.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Climatology
International Journal of Climatology 地学-气象与大气科学
CiteScore
7.50
自引率
7.70%
发文量
417
审稿时长
4 months
期刊介绍: The International Journal of Climatology aims to span the well established but rapidly growing field of climatology, through the publication of research papers, short communications, major reviews of progress and reviews of new books and reports in the area of climate science. The Journal’s main role is to stimulate and report research in climatology, from the expansive fields of the atmospheric, biophysical, engineering and social sciences. Coverage includes: Climate system science; Local to global scale climate observations and modelling; Seasonal to interannual climate prediction; Climatic variability and climate change; Synoptic, dynamic and urban climatology, hydroclimatology, human bioclimatology, ecoclimatology, dendroclimatology, palaeoclimatology, marine climatology and atmosphere-ocean interactions; Application of climatological knowledge to environmental assessment and management and economic production; Climate and society interactions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信