Mostafa Nazarian Parizi, Seyyed Hamid Ghafouri, Mohammad Sadegh Hajmohammadi
{"title":"TARRP: Trust Aware RPL Routing Protocol for IoT","authors":"Mostafa Nazarian Parizi, Seyyed Hamid Ghafouri, Mohammad Sadegh Hajmohammadi","doi":"10.1002/dac.6124","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The internet of things (IoT) is vulnerable to attacks due to its unique characteristics and numerous limitations, and it is highly prone to attack due to sensitive applications. Most of these attacks are aimed at routing and data transmission (which are the most vital pillars of IoT). So far, many research studies have been proposed to improve the security of routing and data transmission, and most of these methods have been developed based on trust models. Trust models are considered as a powerful and complementary tool for security systems that provide the ability to detect malicious nodes. However, most of these researches to advance their goals are only focused on examining the behavior of nodes during data transmission, and based on this, the trust value of nodes is calculated. This way of assessing trust is not enough due to the widespread attacks of malicious nodes. In this paper, a reliable routing method based on the optimization of IPv6 routing protocol for low power and lossy networks (RPL) routing protocol and trust models is introduced called TARRP (Trust Aware RPL Routing Protocol). TARRP is a two-step method in which the purpose of the first stage is to create a trusty and reliable topology. The second stage is to assess the trust and identify malicious nodes. In addition to implementing trust, TARRP also manages related recommendations and attacks. The results of simulations using cooja in different scenarios showed the superiority of TARRP in improving routing trust and data exchange compared to previous work.</p>\n </div>","PeriodicalId":13946,"journal":{"name":"International Journal of Communication Systems","volume":"38 4","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Communication Systems","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/dac.6124","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The internet of things (IoT) is vulnerable to attacks due to its unique characteristics and numerous limitations, and it is highly prone to attack due to sensitive applications. Most of these attacks are aimed at routing and data transmission (which are the most vital pillars of IoT). So far, many research studies have been proposed to improve the security of routing and data transmission, and most of these methods have been developed based on trust models. Trust models are considered as a powerful and complementary tool for security systems that provide the ability to detect malicious nodes. However, most of these researches to advance their goals are only focused on examining the behavior of nodes during data transmission, and based on this, the trust value of nodes is calculated. This way of assessing trust is not enough due to the widespread attacks of malicious nodes. In this paper, a reliable routing method based on the optimization of IPv6 routing protocol for low power and lossy networks (RPL) routing protocol and trust models is introduced called TARRP (Trust Aware RPL Routing Protocol). TARRP is a two-step method in which the purpose of the first stage is to create a trusty and reliable topology. The second stage is to assess the trust and identify malicious nodes. In addition to implementing trust, TARRP also manages related recommendations and attacks. The results of simulations using cooja in different scenarios showed the superiority of TARRP in improving routing trust and data exchange compared to previous work.
期刊介绍:
The International Journal of Communication Systems provides a forum for R&D, open to researchers from all types of institutions and organisations worldwide, aimed at the increasingly important area of communication technology. The Journal''s emphasis is particularly on the issues impacting behaviour at the system, service and management levels. Published twelve times a year, it provides coverage of advances that have a significant potential to impact the immense technical and commercial opportunities in the communications sector. The International Journal of Communication Systems strives to select a balance of contributions that promotes technical innovation allied to practical relevance across the range of system types and issues.
The Journal addresses both public communication systems (Telecommunication, mobile, Internet, and Cable TV) and private systems (Intranets, enterprise networks, LANs, MANs, WANs). The following key areas and issues are regularly covered:
-Transmission/Switching/Distribution technologies (ATM, SDH, TCP/IP, routers, DSL, cable modems, VoD, VoIP, WDM, etc.)
-System control, network/service management
-Network and Internet protocols and standards
-Client-server, distributed and Web-based communication systems
-Broadband and multimedia systems and applications, with a focus on increased service variety and interactivity
-Trials of advanced systems and services; their implementation and evaluation
-Novel concepts and improvements in technique; their theoretical basis and performance analysis using measurement/testing, modelling and simulation
-Performance evaluation issues and methods.