Global Hybrid Simulation of Dayside Magnetopause Energy Transport Under Purely Southward Interplanetary Magnetic Field

IF 2.6 2区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS
Yongyuan Yi, Meng Zhou, Yu Lin, Ye Pang, Runqing Jin, Liangjin Song, Xiaohua Deng
{"title":"Global Hybrid Simulation of Dayside Magnetopause Energy Transport Under Purely Southward Interplanetary Magnetic Field","authors":"Yongyuan Yi,&nbsp;Meng Zhou,&nbsp;Yu Lin,&nbsp;Ye Pang,&nbsp;Runqing Jin,&nbsp;Liangjin Song,&nbsp;Xiaohua Deng","doi":"10.1029/2024JA033045","DOIUrl":null,"url":null,"abstract":"<p>In this paper, dayside magnetopause energy transport (energy transport across the separatrix surface to the magnetopause boundary layer and energy transport inside the magnetopause boundary layer) and its dependence on the magnetopause dynamic evolution under purely southward interplanetary magnetic field (IMF) conditions are studied via a 3-D global hybrid simulation. By investigating the energy transport across the separatrix surface, current layer surface, and magnetopause surface, we find that the energy transport from the magnetosheath to the magnetopause boundary layer is mainly in the form of electromagnetic energy, while the energy transport directly across the magnetopause surface to the magnetosphere is mainly in the form of plasma energy. The energy transport across the magnetopause surface exhibits temporal variability, driven by the dynamic evolution of reconnection and flux rope. During the development of multiple X-lines reconnection and flux rope, a substantial portion of solar wind energy does not directly penetrate the dayside magnetopause to the magnetosphere. Instead, it is transported with the reconnection outflow and flux rope from low latitude to high latitude, and with the drifting flow from the subsolar region to the tail magnetopause within the magnetopause current layer. These results significantly improve our understanding of solar wind-magnetosphere coupling at the dayside magnetopause.</p>","PeriodicalId":15894,"journal":{"name":"Journal of Geophysical Research: Space Physics","volume":"130 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Space Physics","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JA033045","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, dayside magnetopause energy transport (energy transport across the separatrix surface to the magnetopause boundary layer and energy transport inside the magnetopause boundary layer) and its dependence on the magnetopause dynamic evolution under purely southward interplanetary magnetic field (IMF) conditions are studied via a 3-D global hybrid simulation. By investigating the energy transport across the separatrix surface, current layer surface, and magnetopause surface, we find that the energy transport from the magnetosheath to the magnetopause boundary layer is mainly in the form of electromagnetic energy, while the energy transport directly across the magnetopause surface to the magnetosphere is mainly in the form of plasma energy. The energy transport across the magnetopause surface exhibits temporal variability, driven by the dynamic evolution of reconnection and flux rope. During the development of multiple X-lines reconnection and flux rope, a substantial portion of solar wind energy does not directly penetrate the dayside magnetopause to the magnetosphere. Instead, it is transported with the reconnection outflow and flux rope from low latitude to high latitude, and with the drifting flow from the subsolar region to the tail magnetopause within the magnetopause current layer. These results significantly improve our understanding of solar wind-magnetosphere coupling at the dayside magnetopause.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geophysical Research: Space Physics
Journal of Geophysical Research: Space Physics Earth and Planetary Sciences-Geophysics
CiteScore
5.30
自引率
35.70%
发文量
570
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信