Glacier thickness modelling and monitoring with geophysical data constraints: A case study on the Indren Glacier (NW Italy)

IF 2.8 3区 地球科学 Q2 GEOGRAPHY, PHYSICAL
Valeria Strallo, Chiara Colombero, Fabrizio Troilo, Luca Mondardini, Alberto Godio
{"title":"Glacier thickness modelling and monitoring with geophysical data constraints: A case study on the Indren Glacier (NW Italy)","authors":"Valeria Strallo,&nbsp;Chiara Colombero,&nbsp;Fabrizio Troilo,&nbsp;Luca Mondardini,&nbsp;Alberto Godio","doi":"10.1002/esp.6068","DOIUrl":null,"url":null,"abstract":"<p>The ongoing global temperature increase has accelerated the mass loss of glaciers worldwide, with Italian alpine glaciers being particularly vulnerable due to their small size, complex geometries and exposition that implies a fast reaction to thermal and hydrological modifications. In such a frame, the Indren Glacier (Aosta Valley, north-western Italian Alps) provides a valid test site to check the thickness evolution over the last two decades (1999–2020), through an integrated approach combining historical data, on-site geophysical measurements, remote sensing surveys, modelling and temperature analysis. Using a 2018 helicopter-based photogrammetric survey and Ground Penetrating Radar (GPR) survey campaigns of 2020, we obtained new input data and constraints to build up an updated thickness model for the whole glacier through the Glacier Thickness Estimation algorithm (GlaTE). Ice thickness is indeed a key parameter to estimate the ice volume and use it as further input in evolutionary models forecasting future scenarios. As a part of this integrated approach, we also analysed remote sensing and temperature data, finding a major modification in the glacier conditions over the last decade. Further comparing these results with previous studies, we identified a significant decrease in ice thickness, and we confirmed the presence of an over-deepening in the glacier central widest part. This integrated methodology enhances our understanding of glacier dynamics and improves predictions of future changes, offering crucial insights for managing water resources and mitigating natural hazards in the alpine region.</p>","PeriodicalId":11408,"journal":{"name":"Earth Surface Processes and Landforms","volume":"50 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/esp.6068","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth Surface Processes and Landforms","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/esp.6068","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The ongoing global temperature increase has accelerated the mass loss of glaciers worldwide, with Italian alpine glaciers being particularly vulnerable due to their small size, complex geometries and exposition that implies a fast reaction to thermal and hydrological modifications. In such a frame, the Indren Glacier (Aosta Valley, north-western Italian Alps) provides a valid test site to check the thickness evolution over the last two decades (1999–2020), through an integrated approach combining historical data, on-site geophysical measurements, remote sensing surveys, modelling and temperature analysis. Using a 2018 helicopter-based photogrammetric survey and Ground Penetrating Radar (GPR) survey campaigns of 2020, we obtained new input data and constraints to build up an updated thickness model for the whole glacier through the Glacier Thickness Estimation algorithm (GlaTE). Ice thickness is indeed a key parameter to estimate the ice volume and use it as further input in evolutionary models forecasting future scenarios. As a part of this integrated approach, we also analysed remote sensing and temperature data, finding a major modification in the glacier conditions over the last decade. Further comparing these results with previous studies, we identified a significant decrease in ice thickness, and we confirmed the presence of an over-deepening in the glacier central widest part. This integrated methodology enhances our understanding of glacier dynamics and improves predictions of future changes, offering crucial insights for managing water resources and mitigating natural hazards in the alpine region.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Earth Surface Processes and Landforms
Earth Surface Processes and Landforms 地学-地球科学综合
CiteScore
6.40
自引率
12.10%
发文量
215
审稿时长
4 months
期刊介绍: Earth Surface Processes and Landforms is an interdisciplinary international journal concerned with: the interactions between surface processes and landforms and landscapes; that lead to physical, chemical and biological changes; and which in turn create; current landscapes and the geological record of past landscapes. Its focus is core to both physical geographical and geological communities, and also the wider geosciences
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信