Jamie R. Sykes, Katherine J. Denby, Daniel W. Franks
{"title":"Tailoring convolutional neural networks for custom botanical data","authors":"Jamie R. Sykes, Katherine J. Denby, Daniel W. Franks","doi":"10.1002/aps3.11620","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Premise</h3>\n \n <p>Automated disease, weed, and crop classification with computer vision will be invaluable in the future of agriculture. However, existing model architectures like ResNet, EfficientNet, and ConvNeXt often underperform on smaller, specialised datasets typical of such projects.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>We address this gap with informed data collection and the development of a new convolutional neural network architecture, PhytNet. Utilising a novel dataset of infrared cocoa tree images, we demonstrate PhytNet's development and compare its performance with existing architectures. Data collection was informed by spectroscopy data, which provided useful insights into the spectral characteristics of cocoa trees. Cocoa was chosen as a focal species due to the diverse pathology of its diseases, which pose significant challenges for detection.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>ResNet18 showed some signs of overfitting, while EfficientNet variants showed distinct signs of overfitting. By contrast, PhytNet displayed excellent attention to relevant features, almost no overfitting, and an exceptionally low computation cost of 1.19 GFLOPS.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>We show that PhytNet is a promising candidate for rapid disease or plant classification and for precise localisation of disease symptoms for autonomous systems. We also show that the most informative light spectra for detecting cocoa disease are outside the visible spectrum and that efforts to detect disease in cocoa should be focused on local symptoms, rather than the systemic effects of disease.</p>\n </section>\n </div>","PeriodicalId":8022,"journal":{"name":"Applications in Plant Sciences","volume":"13 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aps3.11620","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applications in Plant Sciences","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aps3.11620","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Premise
Automated disease, weed, and crop classification with computer vision will be invaluable in the future of agriculture. However, existing model architectures like ResNet, EfficientNet, and ConvNeXt often underperform on smaller, specialised datasets typical of such projects.
Methods
We address this gap with informed data collection and the development of a new convolutional neural network architecture, PhytNet. Utilising a novel dataset of infrared cocoa tree images, we demonstrate PhytNet's development and compare its performance with existing architectures. Data collection was informed by spectroscopy data, which provided useful insights into the spectral characteristics of cocoa trees. Cocoa was chosen as a focal species due to the diverse pathology of its diseases, which pose significant challenges for detection.
Results
ResNet18 showed some signs of overfitting, while EfficientNet variants showed distinct signs of overfitting. By contrast, PhytNet displayed excellent attention to relevant features, almost no overfitting, and an exceptionally low computation cost of 1.19 GFLOPS.
Conclusions
We show that PhytNet is a promising candidate for rapid disease or plant classification and for precise localisation of disease symptoms for autonomous systems. We also show that the most informative light spectra for detecting cocoa disease are outside the visible spectrum and that efforts to detect disease in cocoa should be focused on local symptoms, rather than the systemic effects of disease.
期刊介绍:
Applications in Plant Sciences (APPS) is a monthly, peer-reviewed, open access journal promoting the rapid dissemination of newly developed, innovative tools and protocols in all areas of the plant sciences, including genetics, structure, function, development, evolution, systematics, and ecology. Given the rapid progress today in technology and its application in the plant sciences, the goal of APPS is to foster communication within the plant science community to advance scientific research. APPS is a publication of the Botanical Society of America, originating in 2009 as the American Journal of Botany''s online-only section, AJB Primer Notes & Protocols in the Plant Sciences.
APPS publishes the following types of articles: (1) Protocol Notes describe new methods and technological advancements; (2) Genomic Resources Articles characterize the development and demonstrate the usefulness of newly developed genomic resources, including transcriptomes; (3) Software Notes detail new software applications; (4) Application Articles illustrate the application of a new protocol, method, or software application within the context of a larger study; (5) Review Articles evaluate available techniques, methods, or protocols; (6) Primer Notes report novel genetic markers with evidence of wide applicability.