Convenient Aqueous-Phase Synthesis of Covalent Organic Frameworks for Anhydrous Proton Conduction

IF 3.6 4区 工程技术 Q3 ENERGY & FUELS
Haiyan Tao, Shuping Jia, Weixiong Dong, Abdukader Abdukayum, Lifeng Zhao
{"title":"Convenient Aqueous-Phase Synthesis of Covalent Organic Frameworks for Anhydrous Proton Conduction","authors":"Haiyan Tao,&nbsp;Shuping Jia,&nbsp;Weixiong Dong,&nbsp;Abdukader Abdukayum,&nbsp;Lifeng Zhao","doi":"10.1002/ente.202400381","DOIUrl":null,"url":null,"abstract":"<p>Covalent organic frameworks (COFs) as a kind of emerging materials has been widely concerned. Developing and recovering new COF materials is of great importance for anhydrous proton conduction, most of the synthesis methods are not organic solvent phase or convenient enough, which would inevitably lead to solvent waste and increase environmental burden. Herein, a method of COF synthesis in aqueous phase is developed, which is used for nonpolluting and sustainable fabrication. Benefits from the suitable channels and stability of HCOF-1, the composite material H<sub>3</sub>PO<sub>4</sub>@HCOF-1 exhibit high proton conductivity (1.29 × 10<sup>−4</sup> S cm<sup>−1</sup>) at 413 K and the crystallinity of HCOF-1 is maintained well after measurements. This work broadens the scope of COF synthesis and promotes the development of anhydrous proton conduction.</p>","PeriodicalId":11573,"journal":{"name":"Energy technology","volume":"13 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy technology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ente.202400381","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Covalent organic frameworks (COFs) as a kind of emerging materials has been widely concerned. Developing and recovering new COF materials is of great importance for anhydrous proton conduction, most of the synthesis methods are not organic solvent phase or convenient enough, which would inevitably lead to solvent waste and increase environmental burden. Herein, a method of COF synthesis in aqueous phase is developed, which is used for nonpolluting and sustainable fabrication. Benefits from the suitable channels and stability of HCOF-1, the composite material H3PO4@HCOF-1 exhibit high proton conductivity (1.29 × 10−4 S cm−1) at 413 K and the crystallinity of HCOF-1 is maintained well after measurements. This work broadens the scope of COF synthesis and promotes the development of anhydrous proton conduction.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy technology
Energy technology ENERGY & FUELS-
CiteScore
7.00
自引率
5.30%
发文量
0
审稿时长
1.3 months
期刊介绍: Energy Technology provides a forum for researchers and engineers from all relevant disciplines concerned with the generation, conversion, storage, and distribution of energy. This new journal shall publish articles covering all technical aspects of energy process engineering from different perspectives, e.g., new concepts of energy generation and conversion; design, operation, control, and optimization of processes for energy generation (e.g., carbon capture) and conversion of energy carriers; improvement of existing processes; combination of single components to systems for energy generation; design of systems for energy storage; production processes of fuels, e.g., hydrogen, electricity, petroleum, biobased fuels; concepts and design of devices for energy distribution.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信