{"title":"Convenient Aqueous-Phase Synthesis of Covalent Organic Frameworks for Anhydrous Proton Conduction","authors":"Haiyan Tao, Shuping Jia, Weixiong Dong, Abdukader Abdukayum, Lifeng Zhao","doi":"10.1002/ente.202400381","DOIUrl":null,"url":null,"abstract":"<p>Covalent organic frameworks (COFs) as a kind of emerging materials has been widely concerned. Developing and recovering new COF materials is of great importance for anhydrous proton conduction, most of the synthesis methods are not organic solvent phase or convenient enough, which would inevitably lead to solvent waste and increase environmental burden. Herein, a method of COF synthesis in aqueous phase is developed, which is used for nonpolluting and sustainable fabrication. Benefits from the suitable channels and stability of HCOF-1, the composite material H<sub>3</sub>PO<sub>4</sub>@HCOF-1 exhibit high proton conductivity (1.29 × 10<sup>−4</sup> S cm<sup>−1</sup>) at 413 K and the crystallinity of HCOF-1 is maintained well after measurements. This work broadens the scope of COF synthesis and promotes the development of anhydrous proton conduction.</p>","PeriodicalId":11573,"journal":{"name":"Energy technology","volume":"13 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy technology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ente.202400381","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Covalent organic frameworks (COFs) as a kind of emerging materials has been widely concerned. Developing and recovering new COF materials is of great importance for anhydrous proton conduction, most of the synthesis methods are not organic solvent phase or convenient enough, which would inevitably lead to solvent waste and increase environmental burden. Herein, a method of COF synthesis in aqueous phase is developed, which is used for nonpolluting and sustainable fabrication. Benefits from the suitable channels and stability of HCOF-1, the composite material H3PO4@HCOF-1 exhibit high proton conductivity (1.29 × 10−4 S cm−1) at 413 K and the crystallinity of HCOF-1 is maintained well after measurements. This work broadens the scope of COF synthesis and promotes the development of anhydrous proton conduction.
期刊介绍:
Energy Technology provides a forum for researchers and engineers from all relevant disciplines concerned with the generation, conversion, storage, and distribution of energy.
This new journal shall publish articles covering all technical aspects of energy process engineering from different perspectives, e.g.,
new concepts of energy generation and conversion;
design, operation, control, and optimization of processes for energy generation (e.g., carbon capture) and conversion of energy carriers;
improvement of existing processes;
combination of single components to systems for energy generation;
design of systems for energy storage;
production processes of fuels, e.g., hydrogen, electricity, petroleum, biobased fuels;
concepts and design of devices for energy distribution.