Kun Chen, Dan Zheng, Jie Gao, Hao Wang, Baoyuan Wang
{"title":"Progress in the Sputtering Preparation of Hf0.5Zr0.5O2 Ferroelectric Films and Memories","authors":"Kun Chen, Dan Zheng, Jie Gao, Hao Wang, Baoyuan Wang","doi":"10.1002/admi.202400367","DOIUrl":null,"url":null,"abstract":"<p>Since the first report of ferroelectric HfO<sub>2</sub> in 2011, researchers are making rapid progress in the understanding of both material properties and applications. Due to its compatibility with complementary metal oxide semiconductor, high coercivity voltage and the fact that ultrathin films remain ferroelectric, it is developed for applications in non-volatile memories for data storage in different polarization states. As the most representative hafnium-based ferroelectric materials, Hf<sub>0.5</sub>Zr<sub>0.5</sub>O<sub>2</sub> has received a great deal of attention due to its various of outstanding properties. Magnetron sputtering is a promising method for the preparation of ferroelectric HfO<sub>2</sub> films. This paper reviews recent developments in preparing Hf<sub>0.5</sub>Zr<sub>0.5</sub>O<sub>2</sub> ferroelectric films and memories. Meanwhile, due to the many advantages of sputtering, such as higher throughputs, low cost and no carbon contamination, this review mainly focused on the preparation of Hf<sub>0.5</sub>Zr<sub>0.5</sub>O<sub>2</sub> ferroelectric thin films by sputtering and explored its working mechanism and optimization strategy. In addition, the factors affecting the reliability of the memories, the mechanism of action, the solution ideas are introduced. These provide the basis for the design and optimization of Hf<sub>0.5</sub>Zr<sub>0.5</sub>O<sub>2</sub> ferroelectric films and memories.</p>","PeriodicalId":115,"journal":{"name":"Advanced Materials Interfaces","volume":"12 3","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202400367","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Interfaces","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/admi.202400367","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Since the first report of ferroelectric HfO2 in 2011, researchers are making rapid progress in the understanding of both material properties and applications. Due to its compatibility with complementary metal oxide semiconductor, high coercivity voltage and the fact that ultrathin films remain ferroelectric, it is developed for applications in non-volatile memories for data storage in different polarization states. As the most representative hafnium-based ferroelectric materials, Hf0.5Zr0.5O2 has received a great deal of attention due to its various of outstanding properties. Magnetron sputtering is a promising method for the preparation of ferroelectric HfO2 films. This paper reviews recent developments in preparing Hf0.5Zr0.5O2 ferroelectric films and memories. Meanwhile, due to the many advantages of sputtering, such as higher throughputs, low cost and no carbon contamination, this review mainly focused on the preparation of Hf0.5Zr0.5O2 ferroelectric thin films by sputtering and explored its working mechanism and optimization strategy. In addition, the factors affecting the reliability of the memories, the mechanism of action, the solution ideas are introduced. These provide the basis for the design and optimization of Hf0.5Zr0.5O2 ferroelectric films and memories.
期刊介绍:
Advanced Materials Interfaces publishes top-level research on interface technologies and effects. Considering any interface formed between solids, liquids, and gases, the journal ensures an interdisciplinary blend of physics, chemistry, materials science, and life sciences. Advanced Materials Interfaces was launched in 2014 and received an Impact Factor of 4.834 in 2018.
The scope of Advanced Materials Interfaces is dedicated to interfaces and surfaces that play an essential role in virtually all materials and devices. Physics, chemistry, materials science and life sciences blend to encourage new, cross-pollinating ideas, which will drive forward our understanding of the processes at the interface.
Advanced Materials Interfaces covers all topics in interface-related research:
Oil / water separation,
Applications of nanostructured materials,
2D materials and heterostructures,
Surfaces and interfaces in organic electronic devices,
Catalysis and membranes,
Self-assembly and nanopatterned surfaces,
Composite and coating materials,
Biointerfaces for technical and medical applications.
Advanced Materials Interfaces provides a forum for topics on surface and interface science with a wide choice of formats: Reviews, Full Papers, and Communications, as well as Progress Reports and Research News.