Machine Learning Exploration of Experimental Conditions for Optimized Electrochemical CO2 Reduction

IF 3.5 4区 化学 Q2 ELECTROCHEMISTRY
Vuri Ayu Setyowati, Shiho Mukaida, Kaito Nagita, Takashi Harada, Shuji Nakanishi, Kazuyuki Iwase
{"title":"Machine Learning Exploration of Experimental Conditions for Optimized Electrochemical CO2 Reduction","authors":"Vuri Ayu Setyowati,&nbsp;Shiho Mukaida,&nbsp;Kaito Nagita,&nbsp;Takashi Harada,&nbsp;Shuji Nakanishi,&nbsp;Kazuyuki Iwase","doi":"10.1002/celc.202400518","DOIUrl":null,"url":null,"abstract":"<p>Electrochemical CO<sub>2</sub> reduction has attracted significant attention as a potential method to close the carbon cycle. In this study, we investigated the impact of the electrode fabrication and electrolysis conditions on the product selectivity of Ag electrocatalysts using a machine learning (ML) approach. Specifically, we explored the experimental conditions for obtaining the desired H<sub>2</sub>/CO mixture ratio with high CO efficiency. Notably, unlike previous ML-based studies, we used experimental results as training data. This ML-based approach allowed us to quantitatively assess the effect of experimental parameters on these targets with a reduced number of experimental trials (only 56 experiments). An inverse analysis based on the ML model suggested the optimal experimental conditions for achieving the desired characteristics of the electrolysis system, with the proposed conditions experimentally validated. This study constitutes the first demonstration of optimal experimental conditions for electrochemical CO<sub>2</sub> reduction with desired characteristics using the experimental results as training data.</p>","PeriodicalId":142,"journal":{"name":"ChemElectroChem","volume":"11 24","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202400518","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemElectroChem","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/celc.202400518","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Electrochemical CO2 reduction has attracted significant attention as a potential method to close the carbon cycle. In this study, we investigated the impact of the electrode fabrication and electrolysis conditions on the product selectivity of Ag electrocatalysts using a machine learning (ML) approach. Specifically, we explored the experimental conditions for obtaining the desired H2/CO mixture ratio with high CO efficiency. Notably, unlike previous ML-based studies, we used experimental results as training data. This ML-based approach allowed us to quantitatively assess the effect of experimental parameters on these targets with a reduced number of experimental trials (only 56 experiments). An inverse analysis based on the ML model suggested the optimal experimental conditions for achieving the desired characteristics of the electrolysis system, with the proposed conditions experimentally validated. This study constitutes the first demonstration of optimal experimental conditions for electrochemical CO2 reduction with desired characteristics using the experimental results as training data.

Abstract Image

优化电化学CO2还原实验条件的机器学习探索
电化学CO2还原作为一种潜在的关闭碳循环的方法引起了人们的广泛关注。在这项研究中,我们使用机器学习(ML)方法研究了电极制作和电解条件对Ag电催化剂产物选择性的影响。具体而言,我们探索了获得理想的H2/CO混合比和高CO效率的实验条件。值得注意的是,与以往基于ml的研究不同,我们使用实验结果作为训练数据。这种基于ml的方法使我们能够定量评估实验参数对这些目标的影响,减少了实验试验次数(仅56次)。基于ML模型的反分析提出了实现电解系统所需特性的最佳实验条件,并通过实验验证了所提出的条件。本研究首次展示了电化学CO2还原的最佳实验条件,并将实验结果作为训练数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemElectroChem
ChemElectroChem ELECTROCHEMISTRY-
CiteScore
7.90
自引率
2.50%
发文量
515
审稿时长
1.2 months
期刊介绍: ChemElectroChem is aimed to become a top-ranking electrochemistry journal for primary research papers and critical secondary information from authors across the world. The journal covers the entire scope of pure and applied electrochemistry, the latter encompassing (among others) energy applications, electrochemistry at interfaces (including surfaces), photoelectrochemistry and bioelectrochemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信