State-of-the-art of cybersecurity in the power system: Simulation, detection, mitigation, and research gaps

IF 2 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Milad Beikbabaei, Ali Mehrizi-Sani, Chen-Ching Liu
{"title":"State-of-the-art of cybersecurity in the power system: Simulation, detection, mitigation, and research gaps","authors":"Milad Beikbabaei,&nbsp;Ali Mehrizi-Sani,&nbsp;Chen-Ching Liu","doi":"10.1049/gtd2.70006","DOIUrl":null,"url":null,"abstract":"<p>In a power system, the communication link can be compromised by intruders who can launch cyberattacks by capturing data packets, sending falsified packets, or stopping data packets from reaching their destination. Moreover, intruders can compromise control devices using supply chain attacks, firmware patching attacks, and insider attackers. Numerous cyberattacks have been reported previously, and cyberattacks are becoming more frequent since attackers are aware of their socioeconomic impacts. Extensive research has been conducted on developing platforms to simulate cyberattacks, studying different types of cyberattacks, investigating the adverse effects of a successful cyberattack on different components of the power system, designing ways to detect anomalies in the power system using electrical measurements, and proposing ways to mitigate the adverse effects of the detected cyberattack. This paper presents a review of state-of-the-art of cybersecurity in the power system, reviewing available simulation tools for studying the cybersecurity of the power system, classifying components of the power system vulnerable to cyberattacks, and summarizing the adverse effects of a successful cyberattack on each component in the power system. Furthermore, different types of cyberattacks and detection and mitigation methods are classified. Research gaps in the cybersecurity of the power system are also discussed.</p>","PeriodicalId":13261,"journal":{"name":"Iet Generation Transmission & Distribution","volume":"19 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/gtd2.70006","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Generation Transmission & Distribution","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/gtd2.70006","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In a power system, the communication link can be compromised by intruders who can launch cyberattacks by capturing data packets, sending falsified packets, or stopping data packets from reaching their destination. Moreover, intruders can compromise control devices using supply chain attacks, firmware patching attacks, and insider attackers. Numerous cyberattacks have been reported previously, and cyberattacks are becoming more frequent since attackers are aware of their socioeconomic impacts. Extensive research has been conducted on developing platforms to simulate cyberattacks, studying different types of cyberattacks, investigating the adverse effects of a successful cyberattack on different components of the power system, designing ways to detect anomalies in the power system using electrical measurements, and proposing ways to mitigate the adverse effects of the detected cyberattack. This paper presents a review of state-of-the-art of cybersecurity in the power system, reviewing available simulation tools for studying the cybersecurity of the power system, classifying components of the power system vulnerable to cyberattacks, and summarizing the adverse effects of a successful cyberattack on each component in the power system. Furthermore, different types of cyberattacks and detection and mitigation methods are classified. Research gaps in the cybersecurity of the power system are also discussed.

Abstract Image

电力系统网络安全的最新技术:模拟、检测、缓解和研究差距
在电力系统中,通信链路可能会被入侵者破坏,入侵者可以通过捕获数据包、发送伪造数据包或阻止数据包到达目的地来发动网络攻击。此外,入侵者可以使用供应链攻击、固件修补攻击和内部攻击者来破坏控制设备。之前已经报道了大量的网络攻击,并且由于攻击者意识到网络攻击对社会经济的影响,网络攻击变得越来越频繁。在开发模拟网络攻击的平台,研究不同类型的网络攻击,调查成功的网络攻击对电力系统不同组件的不利影响,设计使用电气测量检测电力系统异常的方法,并提出减轻检测到的网络攻击不利影响的方法等方面进行了广泛的研究。本文回顾了电力系统中网络安全的最新进展,回顾了用于研究电力系统网络安全的现有仿真工具,对易受网络攻击的电力系统组件进行了分类,并总结了成功的网络攻击对电力系统中每个组件的不利影响。此外,还对不同类型的网络攻击以及检测和缓解方法进行了分类。讨论了电力系统网络安全的研究空白。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Iet Generation Transmission & Distribution
Iet Generation Transmission & Distribution 工程技术-工程:电子与电气
CiteScore
6.10
自引率
12.00%
发文量
301
审稿时长
5.4 months
期刊介绍: IET Generation, Transmission & Distribution is intended as a forum for the publication and discussion of current practice and future developments in electric power generation, transmission and distribution. Practical papers in which examples of good present practice can be described and disseminated are particularly sought. Papers of high technical merit relying on mathematical arguments and computation will be considered, but authors are asked to relegate, as far as possible, the details of analysis to an appendix. The scope of IET Generation, Transmission & Distribution includes the following: Design of transmission and distribution systems Operation and control of power generation Power system management, planning and economics Power system operation, protection and control Power system measurement and modelling Computer applications and computational intelligence in power flexible AC or DC transmission systems Special Issues. Current Call for papers: Next Generation of Synchrophasor-based Power System Monitoring, Operation and Control - https://digital-library.theiet.org/files/IET_GTD_CFP_NGSPSMOC.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信