Increases of Compound Hot Extremes Will Significantly Amplify the Population Exposure Risk Over the Mid–High Latitudes of Asia

IF 3.5 3区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES
Wenhao Jiang, Huopo Chen, Huijun Wang
{"title":"Increases of Compound Hot Extremes Will Significantly Amplify the Population Exposure Risk Over the Mid–High Latitudes of Asia","authors":"Wenhao Jiang,&nbsp;Huopo Chen,&nbsp;Huijun Wang","doi":"10.1002/joc.8689","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Based on Coupled Model Intercomparison Project phase 6 (CMIP6) simulations, we found that the frequency and intensity of daytime–nighttime compound hot extremes (HEs) in the mid-high latitudes of Asia (MHA) are expected to increase. The most significant increase is anticipated under the shared socioeconomic pathway (SSP) 5-8.5, while the smallest increase is expected under SSP1-2.6. Notably, unlike the decreasing trends of independent HEs since 2050 under the high emission scenarios, the compound HEs, which comprise the largest proportion, are expected to continuously increase and intensify. To better understand the impact of these changes on human society, we also focused on changes in population exposed to HEs. The findings reveal that population exposure to compound and nighttime HEs is projected to increase most rapidly under SSP3-7.0, with estimates indicating increases of 10.06 and 3.80 times, respectively, by the end of the century. The most significant increases are expected in the mid-latitudes, where changes in HEs are most pronounced. Climate change is the primary driver behind the rising population exposure to compound and nighttime HEs, with its impact expected to grow over time. Conversely, exposure to daytime HEs is primarily influenced by population changes, particularly in urban areas. Therefore, effective climate change mitigation and adaptive strategies are crucial to reducing future population exposure to HEs in MHA.</p>\n </div>","PeriodicalId":13779,"journal":{"name":"International Journal of Climatology","volume":"45 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Climatology","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/joc.8689","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Based on Coupled Model Intercomparison Project phase 6 (CMIP6) simulations, we found that the frequency and intensity of daytime–nighttime compound hot extremes (HEs) in the mid-high latitudes of Asia (MHA) are expected to increase. The most significant increase is anticipated under the shared socioeconomic pathway (SSP) 5-8.5, while the smallest increase is expected under SSP1-2.6. Notably, unlike the decreasing trends of independent HEs since 2050 under the high emission scenarios, the compound HEs, which comprise the largest proportion, are expected to continuously increase and intensify. To better understand the impact of these changes on human society, we also focused on changes in population exposed to HEs. The findings reveal that population exposure to compound and nighttime HEs is projected to increase most rapidly under SSP3-7.0, with estimates indicating increases of 10.06 and 3.80 times, respectively, by the end of the century. The most significant increases are expected in the mid-latitudes, where changes in HEs are most pronounced. Climate change is the primary driver behind the rising population exposure to compound and nighttime HEs, with its impact expected to grow over time. Conversely, exposure to daytime HEs is primarily influenced by population changes, particularly in urban areas. Therefore, effective climate change mitigation and adaptive strategies are crucial to reducing future population exposure to HEs in MHA.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Climatology
International Journal of Climatology 地学-气象与大气科学
CiteScore
7.50
自引率
7.70%
发文量
417
审稿时长
4 months
期刊介绍: The International Journal of Climatology aims to span the well established but rapidly growing field of climatology, through the publication of research papers, short communications, major reviews of progress and reviews of new books and reports in the area of climate science. The Journal’s main role is to stimulate and report research in climatology, from the expansive fields of the atmospheric, biophysical, engineering and social sciences. Coverage includes: Climate system science; Local to global scale climate observations and modelling; Seasonal to interannual climate prediction; Climatic variability and climate change; Synoptic, dynamic and urban climatology, hydroclimatology, human bioclimatology, ecoclimatology, dendroclimatology, palaeoclimatology, marine climatology and atmosphere-ocean interactions; Application of climatological knowledge to environmental assessment and management and economic production; Climate and society interactions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信