Promoting CO2 Methanation Activity of NiAl Mixed Metal Oxide Catalysts Through Hydrophobicity Control

IF 1.9 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY
Ju Hyeong Lee, Kwang Young Kim, Daewon Oh, Woo Jin Byun, Jae Sung Lee
{"title":"Promoting CO2 Methanation Activity of NiAl Mixed Metal Oxide Catalysts Through Hydrophobicity Control","authors":"Ju Hyeong Lee,&nbsp;Kwang Young Kim,&nbsp;Daewon Oh,&nbsp;Woo Jin Byun,&nbsp;Jae Sung Lee","doi":"10.1002/slct.202404427","DOIUrl":null,"url":null,"abstract":"<p>During CO<sub>2</sub> methanation, the generation of H<sub>2</sub>O as a by-product can lead to its strong adsorption on the catalyst's active sites, potentially blocking them or altering the active phase, thereby degrading catalytic performance. To mitigate this inhibition effect by water, we introduce a hydrophobic surface via stearic acid treatment to rapidly remove H<sub>2</sub>O formed during CO<sub>2</sub> methanation over NiAl mixed metal oxide (MMO)-derived catalysts. The crystal structure of NiAl MMO and the average Ni particle size of ∼13 nm remain unaltered by the hydrophobic treatment. The NiAl catalyst treated with an optimal concentration of stearic acid shows a nearly doubled CO<sub>2</sub> conversion of 61.4% at 275 °C, compared to the pristine catalyst, and this high activity is sustained for over 100 h without deactivation. However, excessive stearic acid coverage inhibits CO<sub>2</sub> adsorption significantly, causing a sharp drop in CO<sub>2</sub> conversion to 10.8%. This study demonstrates that hydrophobic surface modification can effectively ameliorate catalyst deactivation due to by-product H<sub>2</sub>O, which could be applied to many other catalytic reactions where H<sub>2</sub>O acts as an inhibiting by-product.</p>","PeriodicalId":146,"journal":{"name":"ChemistrySelect","volume":"10 3","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemistrySelect","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/slct.202404427","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

During CO2 methanation, the generation of H2O as a by-product can lead to its strong adsorption on the catalyst's active sites, potentially blocking them or altering the active phase, thereby degrading catalytic performance. To mitigate this inhibition effect by water, we introduce a hydrophobic surface via stearic acid treatment to rapidly remove H2O formed during CO2 methanation over NiAl mixed metal oxide (MMO)-derived catalysts. The crystal structure of NiAl MMO and the average Ni particle size of ∼13 nm remain unaltered by the hydrophobic treatment. The NiAl catalyst treated with an optimal concentration of stearic acid shows a nearly doubled CO2 conversion of 61.4% at 275 °C, compared to the pristine catalyst, and this high activity is sustained for over 100 h without deactivation. However, excessive stearic acid coverage inhibits CO2 adsorption significantly, causing a sharp drop in CO2 conversion to 10.8%. This study demonstrates that hydrophobic surface modification can effectively ameliorate catalyst deactivation due to by-product H2O, which could be applied to many other catalytic reactions where H2O acts as an inhibiting by-product.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemistrySelect
ChemistrySelect Chemistry-General Chemistry
CiteScore
3.30
自引率
4.80%
发文量
1809
审稿时长
1.6 months
期刊介绍: ChemistrySelect is the latest journal from ChemPubSoc Europe and Wiley-VCH. It offers researchers a quality society-owned journal in which to publish their work in all areas of chemistry. Manuscripts are evaluated by active researchers to ensure they add meaningfully to the scientific literature, and those accepted are processed quickly to ensure rapid online publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信