Engineering Quantum Phases of Ultracold Bosons on Lieb Lattice

IF 5.6 3区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Yang Lin
{"title":"Engineering Quantum Phases of Ultracold Bosons on Lieb Lattice","authors":"Yang Lin","doi":"10.1002/prop.202300235","DOIUrl":null,"url":null,"abstract":"<p>The quantum phase transition of the hardcore boson model on a Lieb lattice by quantum Monte Carlo simulations is studied. Considering nearest-neighbor interchain hopping, the phase diagram of the Bose-Hubbard model on the Lieb lattice contains solid phases with average density <span></span><math>\n <semantics>\n <mi>ρ</mi>\n <annotation>$\\rho$</annotation>\n </semantics></math> = 2/3, and superfluid phases between solid phases.Two ways of controlling quantum states are discussed: to add an alternating on-site <span></span><math>\n <semantics>\n <mi>μ</mi>\n <annotation>$\\mu$</annotation>\n </semantics></math> potential, and to add an alternating hopping amplitude in the <i>X</i>- and <i>Y</i>-directions. For the above cases, there exists a new filling state, <span></span><math>\n <semantics>\n <mi>ρ</mi>\n <annotation>$\\rho$</annotation>\n </semantics></math> = 1/3. Adding an alternating on-site potential to the Hamiltonian, the phase transition from <span></span><math>\n <semantics>\n <mrow>\n <mi>ρ</mi>\n <mo>=</mo>\n <mn>1</mn>\n <mo>/</mo>\n <mn>3</mn>\n </mrow>\n <annotation>$\\rho =1/3$</annotation>\n </semantics></math> to <span></span><math>\n <semantics>\n <mrow>\n <mi>ρ</mi>\n <mo>=</mo>\n <mn>2</mn>\n <mo>/</mo>\n <mn>3</mn>\n </mrow>\n <annotation>$\\rho =2/3$</annotation>\n </semantics></math> is sharp and discontinuous, featuring the nature of a first order. Considering a dimerization term, for large V, it is expected that there is a direct transition from the valence-bond insulator to the CDW as the interaction is strengthened. For the three cases, upper boundary for <span></span><math>\n <semantics>\n <mrow>\n <mi>ρ</mi>\n <mo>=</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$\\rho =0$</annotation>\n </semantics></math> and lower boundary for <span></span><math>\n <semantics>\n <mrow>\n <mi>ρ</mi>\n <mo>=</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$\\rho =1$</annotation>\n </semantics></math> are calculated.</p>","PeriodicalId":55150,"journal":{"name":"Fortschritte Der Physik-Progress of Physics","volume":"73 1-2","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fortschritte Der Physik-Progress of Physics","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/prop.202300235","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The quantum phase transition of the hardcore boson model on a Lieb lattice by quantum Monte Carlo simulations is studied. Considering nearest-neighbor interchain hopping, the phase diagram of the Bose-Hubbard model on the Lieb lattice contains solid phases with average density ρ $\rho$ = 2/3, and superfluid phases between solid phases.Two ways of controlling quantum states are discussed: to add an alternating on-site μ $\mu$ potential, and to add an alternating hopping amplitude in the X- and Y-directions. For the above cases, there exists a new filling state, ρ $\rho$ = 1/3. Adding an alternating on-site potential to the Hamiltonian, the phase transition from ρ = 1 / 3 $\rho =1/3$ to ρ = 2 / 3 $\rho =2/3$ is sharp and discontinuous, featuring the nature of a first order. Considering a dimerization term, for large V, it is expected that there is a direct transition from the valence-bond insulator to the CDW as the interaction is strengthened. For the three cases, upper boundary for ρ = 0 $\rho =0$ and lower boundary for ρ = 1 $\rho =1$ are calculated.

Lieb晶格上超冷玻色子的工程量子相
用量子蒙特卡罗模拟方法研究了硬核玻色子模型在Lieb晶格上的量子相变。考虑最近邻链间跳,Lieb晶格上Bose-Hubbard模型的相图包含平均密度ρ $\rho$ = 2/3的固相和固相间的超流体相。讨论了两种控制量子态的方法:在X和y方向上增加交替的μ $\mu$势和增加交替的跳变幅度。对于上述情况,存在一个新的填充状态,ρ $\rho$ = 1/3。在哈密顿量中加入交变现场电位,从ρ = 1 / 3 $\rho =1/3$到ρ = 2 / 3 $\rho =2/3$的相变是急剧的和不连续的。一阶的具有一阶性质的考虑到二聚化项,对于大V,随着相互作用的加强,预计会从价键绝缘体直接过渡到CDW。对于这三种情况,计算了ρ = 0 $\rho =0$时的上边界和ρ = 1 $\rho =1$时的下边界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.70
自引率
7.70%
发文量
75
审稿时长
6-12 weeks
期刊介绍: The journal Fortschritte der Physik - Progress of Physics is a pure online Journal (since 2013). Fortschritte der Physik - Progress of Physics is devoted to the theoretical and experimental studies of fundamental constituents of matter and their interactions e. g. elementary particle physics, classical and quantum field theory, the theory of gravitation and cosmology, quantum information, thermodynamics and statistics, laser physics and nonlinear dynamics, including chaos and quantum chaos. Generally the papers are review articles with a detailed survey on relevant publications, but original papers of general interest are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信