Energy and Exergy Evaluation of the Integrated Waste Energy Recovery System (IWERS) and the Solar-Powered Integrated Waste Energy Recovery System (SPIWERS) in Various Climates
{"title":"Energy and Exergy Evaluation of the Integrated Waste Energy Recovery System (IWERS) and the Solar-Powered Integrated Waste Energy Recovery System (SPIWERS) in Various Climates","authors":"Juan Carlos Ríos-Fernández","doi":"10.1155/er/4282464","DOIUrl":null,"url":null,"abstract":"<div>\n <p>The integrated waste energy recovery system (IWERS) is a thermal system that recovers waste heat from steam generated in bakery ovens to produce hot water. This reduces energy and water consumption in shopping centers. This article analyzes the technical improvement of incorporating renewable solar thermal energy into the system. It introduces the new solar-powered IWERS (SPIWERS) for the first time. The exergetic efficiency of IWERS and SPIWERS was measured over 1 year in real supermarkets located in different climatic zones to determine their performance variables. This paper presents precise data for future improvements in the energy efficiency of waste heat recovery systems, making it an innovative contribution to the field. The exergetic efficiency of IWERS was found to be lower in subtropical climates, but no significant variation was observed in other climates studied. Additionally, the exergetic efficiency of IWERS components decreases with ambient temperature, particularly in warm months. Regarding SPIWERS, the highest exergetic efficiency values were obtained in oceanic climates. IWERS employs electric boilers, whereas SPIWERS system utilizes solar collectors. Although IWERS exhibited superior overall exergy efficiency, particularly in cold climates, SPIWERS distinguished itself with a reduced environmental impact, wholly supplanting electric power with solar thermal energy and a swift economic return on investment within a period of less than 4 years, a duration that is half that of IWERS. A detailed examination of the individual components of each system will facilitate the identification of potential avenues for enhancement, ensuring the system’s capacity for adaptation to specific climatic conditions and seasonal variations. Thus, the exergy efficiency of the DWH tank in IWERS remains constant across all climatic zones and throughout the year. This exergy efficiency is approximately 65%. In contrast, a notable variation is observed in the case of SPIWERS, which is more pronounced in more favorable weather conditions. On the other hand, the exergy efficiency of electric water boilers is greater in colder climates and times of the year, with a range of 30%–40%. Additionally, the exergy efficiency of the solar collector is greater in months and areas with cool ambient temperatures, optimal solar radiation, and moderate fluid temperatures within the collector, with a range of 5%–11%.</p>\n </div>","PeriodicalId":14051,"journal":{"name":"International Journal of Energy Research","volume":"2025 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/er/4282464","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Energy Research","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/er/4282464","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
The integrated waste energy recovery system (IWERS) is a thermal system that recovers waste heat from steam generated in bakery ovens to produce hot water. This reduces energy and water consumption in shopping centers. This article analyzes the technical improvement of incorporating renewable solar thermal energy into the system. It introduces the new solar-powered IWERS (SPIWERS) for the first time. The exergetic efficiency of IWERS and SPIWERS was measured over 1 year in real supermarkets located in different climatic zones to determine their performance variables. This paper presents precise data for future improvements in the energy efficiency of waste heat recovery systems, making it an innovative contribution to the field. The exergetic efficiency of IWERS was found to be lower in subtropical climates, but no significant variation was observed in other climates studied. Additionally, the exergetic efficiency of IWERS components decreases with ambient temperature, particularly in warm months. Regarding SPIWERS, the highest exergetic efficiency values were obtained in oceanic climates. IWERS employs electric boilers, whereas SPIWERS system utilizes solar collectors. Although IWERS exhibited superior overall exergy efficiency, particularly in cold climates, SPIWERS distinguished itself with a reduced environmental impact, wholly supplanting electric power with solar thermal energy and a swift economic return on investment within a period of less than 4 years, a duration that is half that of IWERS. A detailed examination of the individual components of each system will facilitate the identification of potential avenues for enhancement, ensuring the system’s capacity for adaptation to specific climatic conditions and seasonal variations. Thus, the exergy efficiency of the DWH tank in IWERS remains constant across all climatic zones and throughout the year. This exergy efficiency is approximately 65%. In contrast, a notable variation is observed in the case of SPIWERS, which is more pronounced in more favorable weather conditions. On the other hand, the exergy efficiency of electric water boilers is greater in colder climates and times of the year, with a range of 30%–40%. Additionally, the exergy efficiency of the solar collector is greater in months and areas with cool ambient temperatures, optimal solar radiation, and moderate fluid temperatures within the collector, with a range of 5%–11%.
期刊介绍:
The International Journal of Energy Research (IJER) is dedicated to providing a multidisciplinary, unique platform for researchers, scientists, engineers, technology developers, planners, and policy makers to present their research results and findings in a compelling manner on novel energy systems and applications. IJER covers the entire spectrum of energy from production to conversion, conservation, management, systems, technologies, etc. We encourage papers submissions aiming at better efficiency, cost improvements, more effective resource use, improved design and analysis, reduced environmental impact, and hence leading to better sustainability.
IJER is concerned with the development and exploitation of both advanced traditional and new energy sources, systems, technologies and applications. Interdisciplinary subjects in the area of novel energy systems and applications are also encouraged. High-quality research papers are solicited in, but are not limited to, the following areas with innovative and novel contents:
-Biofuels and alternatives
-Carbon capturing and storage technologies
-Clean coal technologies
-Energy conversion, conservation and management
-Energy storage
-Energy systems
-Hybrid/combined/integrated energy systems for multi-generation
-Hydrogen energy and fuel cells
-Hydrogen production technologies
-Micro- and nano-energy systems and technologies
-Nuclear energy
-Renewable energies (e.g. geothermal, solar, wind, hydro, tidal, wave, biomass)
-Smart energy system