Enhanced Forecasting and Assessment of Urban Air Quality by an Automated Machine Learning System: The AI-Air

IF 2.9 3区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS
Jiayu Yang, Huabing Ke, Sunling Gong, Yaqiang Wang, Lei Zhang, Chunhong Zhou, Jingyue Mo, Yan You
{"title":"Enhanced Forecasting and Assessment of Urban Air Quality by an Automated Machine Learning System: The AI-Air","authors":"Jiayu Yang,&nbsp;Huabing Ke,&nbsp;Sunling Gong,&nbsp;Yaqiang Wang,&nbsp;Lei Zhang,&nbsp;Chunhong Zhou,&nbsp;Jingyue Mo,&nbsp;Yan You","doi":"10.1029/2024EA003942","DOIUrl":null,"url":null,"abstract":"<p>An automated air quality forecasting system (AI-Air) was developed to optimize and improve air quality forecasting for different typical cities, combined with the China Meteorological Administration Unified Atmospheric Chemistry Environmental Model (CUACE), and used in a typical inland city of Zhengzhou and a coastal city of Haikou in China. The performance evaluation results show that for the PM<sub>2.5</sub> forecasts, the correlation coefficient (R) is increased by 0.07–0.13, and the mean error (ME) and root mean square error (RMSE) is decreased by 3.2–3.5 and 3.8–4.7 μg/m³. Similarly, for the O<sub>3</sub> forecasts, the R value is improved by 0.09–0.44, and ME and RMSE values are reduced by 7.1–22.8 and 9.0–25.9 μg/m³, respectively. Case analyses of operational forecasting also indicate that the AI-Air system can significantly improve the forecasting performance of pollutant concentrations and effectively correct underestimation, or overestimation phenomena compared to the CUACE model. Additionally, explanatory analyses were performed to assess the key meteorological factors affecting air quality in cities with different topographic and climatic conditions. The AI-Air system highlights the potential of AI techniques to improve forecast accuracy and efficiency, and with promising applications in the field of air quality forecasting.</p>","PeriodicalId":54286,"journal":{"name":"Earth and Space Science","volume":"12 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024EA003942","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth and Space Science","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024EA003942","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

An automated air quality forecasting system (AI-Air) was developed to optimize and improve air quality forecasting for different typical cities, combined with the China Meteorological Administration Unified Atmospheric Chemistry Environmental Model (CUACE), and used in a typical inland city of Zhengzhou and a coastal city of Haikou in China. The performance evaluation results show that for the PM2.5 forecasts, the correlation coefficient (R) is increased by 0.07–0.13, and the mean error (ME) and root mean square error (RMSE) is decreased by 3.2–3.5 and 3.8–4.7 μg/m³. Similarly, for the O3 forecasts, the R value is improved by 0.09–0.44, and ME and RMSE values are reduced by 7.1–22.8 and 9.0–25.9 μg/m³, respectively. Case analyses of operational forecasting also indicate that the AI-Air system can significantly improve the forecasting performance of pollutant concentrations and effectively correct underestimation, or overestimation phenomena compared to the CUACE model. Additionally, explanatory analyses were performed to assess the key meteorological factors affecting air quality in cities with different topographic and climatic conditions. The AI-Air system highlights the potential of AI techniques to improve forecast accuracy and efficiency, and with promising applications in the field of air quality forecasting.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Earth and Space Science
Earth and Space Science Earth and Planetary Sciences-General Earth and Planetary Sciences
CiteScore
5.50
自引率
3.20%
发文量
285
审稿时长
19 weeks
期刊介绍: Marking AGU’s second new open access journal in the last 12 months, Earth and Space Science is the only journal that reflects the expansive range of science represented by AGU’s 62,000 members, including all of the Earth, planetary, and space sciences, and related fields in environmental science, geoengineering, space engineering, and biogeochemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信