Mahdad Talebpour, Elie Bou-Zeid, Claire Welty, Dan Li, Benjamin Zaitchik
{"title":"Sensitivity of Fine-Resolution Urban Heat Island Simulations to Soil Moisture Parameterization","authors":"Mahdad Talebpour, Elie Bou-Zeid, Claire Welty, Dan Li, Benjamin Zaitchik","doi":"10.1002/joc.8664","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Urban areas experience the impact of natural disasters, such as heatwaves and flash floods, disparately in different neighbourhoods across a city. The demand for precise urban hydrometeorological and hydroclimatological modelling to examine this disparity, and the interacting challenges posed by climate change and urbanisation, has thus surged. The Weather Research and Forecasting (WRF) model has served such operational and research purposes for decades. Recent advancements in WRF, including enhanced numerical schemes and sophisticated urban atmospheric-hydrological parameterizations, have empowered the simulation of urban geophysical processes at high resolution (~1 km), but even this resolution misses significant urban microclimate variability. This study applies the large-eddy simulations (LES) mode within WRF, coupled with single-layer urban canopy models (SLUCM), to enable even finer-scale modelling (150 m) of the Urban Heat Island (UHI) effect in the Baltimore metropolitan area. We run nine scenarios to evaluate various methods of initializing soil moisture and various spinup lead times, and to assess the impact of WRF's Mosaic approach in depicting subgrid-scale processes. We evaluate the scenarios by comparing the WRF simulated land surface temperature (LST) against Landsat LST and the WRF simulated hourly 2-m air temperatures (AT) with observations from eight weather stations across the domain. Results underscore the paramount influence of the lead spinup time on the spatiotemporal distribution of simulated soil moisture, consequently shaping WRF's efficacy in predicting the UHI. Furthermore, interpolating soil moisture-related parameters from the parent for child domain initialization yields a notable reduction in mean and root-mean-squared errors. This improvement was particularly evident in simulations with the longest spinup time, affirming the importance of carefully designing the initialization of soil moisture for improved urban temperature predictions.</p>\n </div>","PeriodicalId":13779,"journal":{"name":"International Journal of Climatology","volume":"45 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Climatology","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/joc.8664","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Urban areas experience the impact of natural disasters, such as heatwaves and flash floods, disparately in different neighbourhoods across a city. The demand for precise urban hydrometeorological and hydroclimatological modelling to examine this disparity, and the interacting challenges posed by climate change and urbanisation, has thus surged. The Weather Research and Forecasting (WRF) model has served such operational and research purposes for decades. Recent advancements in WRF, including enhanced numerical schemes and sophisticated urban atmospheric-hydrological parameterizations, have empowered the simulation of urban geophysical processes at high resolution (~1 km), but even this resolution misses significant urban microclimate variability. This study applies the large-eddy simulations (LES) mode within WRF, coupled with single-layer urban canopy models (SLUCM), to enable even finer-scale modelling (150 m) of the Urban Heat Island (UHI) effect in the Baltimore metropolitan area. We run nine scenarios to evaluate various methods of initializing soil moisture and various spinup lead times, and to assess the impact of WRF's Mosaic approach in depicting subgrid-scale processes. We evaluate the scenarios by comparing the WRF simulated land surface temperature (LST) against Landsat LST and the WRF simulated hourly 2-m air temperatures (AT) with observations from eight weather stations across the domain. Results underscore the paramount influence of the lead spinup time on the spatiotemporal distribution of simulated soil moisture, consequently shaping WRF's efficacy in predicting the UHI. Furthermore, interpolating soil moisture-related parameters from the parent for child domain initialization yields a notable reduction in mean and root-mean-squared errors. This improvement was particularly evident in simulations with the longest spinup time, affirming the importance of carefully designing the initialization of soil moisture for improved urban temperature predictions.
期刊介绍:
The International Journal of Climatology aims to span the well established but rapidly growing field of climatology, through the publication of research papers, short communications, major reviews of progress and reviews of new books and reports in the area of climate science. The Journal’s main role is to stimulate and report research in climatology, from the expansive fields of the atmospheric, biophysical, engineering and social sciences. Coverage includes: Climate system science; Local to global scale climate observations and modelling; Seasonal to interannual climate prediction; Climatic variability and climate change; Synoptic, dynamic and urban climatology, hydroclimatology, human bioclimatology, ecoclimatology, dendroclimatology, palaeoclimatology, marine climatology and atmosphere-ocean interactions; Application of climatological knowledge to environmental assessment and management and economic production; Climate and society interactions