Sensitivity of Fine-Resolution Urban Heat Island Simulations to Soil Moisture Parameterization

IF 3.5 3区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES
Mahdad Talebpour, Elie Bou-Zeid, Claire Welty, Dan Li, Benjamin Zaitchik
{"title":"Sensitivity of Fine-Resolution Urban Heat Island Simulations to Soil Moisture Parameterization","authors":"Mahdad Talebpour,&nbsp;Elie Bou-Zeid,&nbsp;Claire Welty,&nbsp;Dan Li,&nbsp;Benjamin Zaitchik","doi":"10.1002/joc.8664","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Urban areas experience the impact of natural disasters, such as heatwaves and flash floods, disparately in different neighbourhoods across a city. The demand for precise urban hydrometeorological and hydroclimatological modelling to examine this disparity, and the interacting challenges posed by climate change and urbanisation, has thus surged. The Weather Research and Forecasting (WRF) model has served such operational and research purposes for decades. Recent advancements in WRF, including enhanced numerical schemes and sophisticated urban atmospheric-hydrological parameterizations, have empowered the simulation of urban geophysical processes at high resolution (~1 km), but even this resolution misses significant urban microclimate variability. This study applies the large-eddy simulations (LES) mode within WRF, coupled with single-layer urban canopy models (SLUCM), to enable even finer-scale modelling (150 m) of the Urban Heat Island (UHI) effect in the Baltimore metropolitan area. We run nine scenarios to evaluate various methods of initializing soil moisture and various spinup lead times, and to assess the impact of WRF's Mosaic approach in depicting subgrid-scale processes. We evaluate the scenarios by comparing the WRF simulated land surface temperature (LST) against Landsat LST and the WRF simulated hourly 2-m air temperatures (AT) with observations from eight weather stations across the domain. Results underscore the paramount influence of the lead spinup time on the spatiotemporal distribution of simulated soil moisture, consequently shaping WRF's efficacy in predicting the UHI. Furthermore, interpolating soil moisture-related parameters from the parent for child domain initialization yields a notable reduction in mean and root-mean-squared errors. This improvement was particularly evident in simulations with the longest spinup time, affirming the importance of carefully designing the initialization of soil moisture for improved urban temperature predictions.</p>\n </div>","PeriodicalId":13779,"journal":{"name":"International Journal of Climatology","volume":"45 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Climatology","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/joc.8664","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Urban areas experience the impact of natural disasters, such as heatwaves and flash floods, disparately in different neighbourhoods across a city. The demand for precise urban hydrometeorological and hydroclimatological modelling to examine this disparity, and the interacting challenges posed by climate change and urbanisation, has thus surged. The Weather Research and Forecasting (WRF) model has served such operational and research purposes for decades. Recent advancements in WRF, including enhanced numerical schemes and sophisticated urban atmospheric-hydrological parameterizations, have empowered the simulation of urban geophysical processes at high resolution (~1 km), but even this resolution misses significant urban microclimate variability. This study applies the large-eddy simulations (LES) mode within WRF, coupled with single-layer urban canopy models (SLUCM), to enable even finer-scale modelling (150 m) of the Urban Heat Island (UHI) effect in the Baltimore metropolitan area. We run nine scenarios to evaluate various methods of initializing soil moisture and various spinup lead times, and to assess the impact of WRF's Mosaic approach in depicting subgrid-scale processes. We evaluate the scenarios by comparing the WRF simulated land surface temperature (LST) against Landsat LST and the WRF simulated hourly 2-m air temperatures (AT) with observations from eight weather stations across the domain. Results underscore the paramount influence of the lead spinup time on the spatiotemporal distribution of simulated soil moisture, consequently shaping WRF's efficacy in predicting the UHI. Furthermore, interpolating soil moisture-related parameters from the parent for child domain initialization yields a notable reduction in mean and root-mean-squared errors. This improvement was particularly evident in simulations with the longest spinup time, affirming the importance of carefully designing the initialization of soil moisture for improved urban temperature predictions.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Climatology
International Journal of Climatology 地学-气象与大气科学
CiteScore
7.50
自引率
7.70%
发文量
417
审稿时长
4 months
期刊介绍: The International Journal of Climatology aims to span the well established but rapidly growing field of climatology, through the publication of research papers, short communications, major reviews of progress and reviews of new books and reports in the area of climate science. The Journal’s main role is to stimulate and report research in climatology, from the expansive fields of the atmospheric, biophysical, engineering and social sciences. Coverage includes: Climate system science; Local to global scale climate observations and modelling; Seasonal to interannual climate prediction; Climatic variability and climate change; Synoptic, dynamic and urban climatology, hydroclimatology, human bioclimatology, ecoclimatology, dendroclimatology, palaeoclimatology, marine climatology and atmosphere-ocean interactions; Application of climatological knowledge to environmental assessment and management and economic production; Climate and society interactions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信