Fluorescence-Based Detector Design Principles for Low Vapor Pressure Analytes

Alex S. Loch, Paul L. Burn, Paul E. Shaw
{"title":"Fluorescence-Based Detector Design Principles for Low Vapor Pressure Analytes","authors":"Alex S. Loch,&nbsp;Paul L. Burn,&nbsp;Paul E. Shaw","doi":"10.1002/adsr.202400092","DOIUrl":null,"url":null,"abstract":"<p>Fluorescence-based sensing is a promising method for detecting trace quantities (vapors) of chemical threats. However, direct detection at standard temperature and pressure of chemicals with low volatilities, such as the salts of illegal drugs, is difficult to achieve. Herein, the development of a testing platform designed to maximize the response from fluorescent material detection of low volatility analytes, using the salts of illicit drugs as exemplars, is described. The challenges encountered in detecting low-volatility analytes are highlighted, and the hardware solutions employed to overcome them are detailed. The testing platform is composed of a swab heating unit, a sensing chamber, and optical components that enable detection of illicit drugs via a fluorescence quenching mechanism. The swab heating unit facilitates volatilization of the analytes, with the shape of the sensing chamber and its fabrication material optimized to maximize the interaction of the analyte with the sensing element, increasing sensitivity. The detection platform is able to detect trace amounts (down to 30 ng) of (±)-3,4-methylenedioxyamphetamine hydrochloride (MDA•HCl), along with other common illicit drug salts such as cocaine hydrochloride (cocaine•HCl), fentanyl•HCl, and methamphetamine•HCl (MA•HCl).</p>","PeriodicalId":100037,"journal":{"name":"Advanced Sensor Research","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsr.202400092","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Sensor Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adsr.202400092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Fluorescence-based sensing is a promising method for detecting trace quantities (vapors) of chemical threats. However, direct detection at standard temperature and pressure of chemicals with low volatilities, such as the salts of illegal drugs, is difficult to achieve. Herein, the development of a testing platform designed to maximize the response from fluorescent material detection of low volatility analytes, using the salts of illicit drugs as exemplars, is described. The challenges encountered in detecting low-volatility analytes are highlighted, and the hardware solutions employed to overcome them are detailed. The testing platform is composed of a swab heating unit, a sensing chamber, and optical components that enable detection of illicit drugs via a fluorescence quenching mechanism. The swab heating unit facilitates volatilization of the analytes, with the shape of the sensing chamber and its fabrication material optimized to maximize the interaction of the analyte with the sensing element, increasing sensitivity. The detection platform is able to detect trace amounts (down to 30 ng) of (±)-3,4-methylenedioxyamphetamine hydrochloride (MDA•HCl), along with other common illicit drug salts such as cocaine hydrochloride (cocaine•HCl), fentanyl•HCl, and methamphetamine•HCl (MA•HCl).

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信